[1] Adler, R.L., Konheim, A.G., & McAndrew, M.H. (1965). Topological entropy. Trans. Amer. Math. Soc, 114, 309–319. DOI: https://doi.org/10.1090/S0002-9947-1965-0175106-9.
[2] Bowen, R. (1979). Invariant measures for Markov maps of the interval. Comm. Math. Physics, 69, 1–14. DOI: https://doi.org/10.1007/BF01941319.
[3] Brin, M., & Katok, A. (1983). On local entropy in geometric dynamics. 30–38, New York, Springer-Verlag, (Lecture Notes in Mathematics 1007). DOI: https://doi.org/10.1007/bfb0061408.
[4] Kolmogorov, A.N. (1958). New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Doklady of Russian Academy of Sciences, 119, 861–864.
[5] Lindenstrauss, E. (2001). Pointwise theorems for amenable groups. Invent. math, 146, 259–295. DOI: https://doi.org/10.1007/s002220100162.
[6] McMillan, B. (1953). The basic theorems of information theory. Ann. Math. Statist, 24, 196–219. DOI: https://doi.org/10.1214/aoms/1177729028.
[7] Ollagnier, J.M. (1985). Ergodic Theory and Statistical Mechanics. Springer Berlin, Heidelberg. DOI: https://doi.org/10.1007/BFb0101575.
[8] Phelps, R. (2001). Lectures on Choquet’s Theorem. Springer-Verlag Berlin, Heidelberg (originally published by Van Nostrand, Princeton, 1966). DOI: https://doi.org/10.1007/b76887.
[9] Rahimi, M., & Assari, A. (2020). Mutual Entropy Map for Continuous Systems on Compact Metric Spaces. Mathematical Analysis and Convex Optimization, 1, 49–55. DOI: https://doi.org/10.29252/maco.1.1.6.
[10] Rahimi, M., & Assari, A. (2021). On local metric pressure of dynamical systems. Periodica Mathematica Hungarica, 82, 223–230. DOI: https://doi.org/10.1007/s10998-020-00355-w.
[11] Rahimi, M., Assari, A., & Ramezani, F. (2016). A local approach to Yager entropy of dynamical systems. International Journal of Fuzzy Systems, 18, 98–102. DOI: https://doi.org/10.1007/s40815-015-0062-z.
[12] Rahimi, M., & Riazi, A. (2012). Entropy operator for continuous dynamical systems of finite topological entropy. Bulletin of the Iranian Mathematical Society, 38, 883–892.
[13] Rahimi, M., & Riazi, A. (2012). Entropy functional for continuous systems of finite entropy. Acta Mathematica Scientia, 32B, 775–782. DOI: https://doi.org/10.1016/S0252-9602(12)60057-5.
[14] Rathie, P.N. (1970). On a Generalized Entropy and a Coding Theorem. J. Appl. Probl, 7, 124–133. DOI: https://doi.org/10.2307/3212154.
[15] Réyni, A. (1961). On Measures of Entropy and Information. Proc. 4th Berk. Symp. Math Statist. and Probl., University of California Press, Vol. 1, 547–561.
[16] Rokhlin, V.A., & Sinai, Ya.G. (1961). The structure and properties of invariant measurable partitions. Dokl. Akad. Nauk SSSR, 141, 1038–1041.
[17] Shannon, C. (1948). A mathematical theory of communication. Bell Syst. Tech. Journal, 27, 379–423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[18] Shulman, A. (1988). Maximal ergodic theorems on groups. Dept. Lit. NIINTI, No. 2184.
[19] Sinai, Ya.G. (1959). On the notion of entropy of a dynamical system. Doklady of Russian Academy of Sciences, 124, 768–771. DOI: https://doi.org/10.1007/978-0-387-87870-6_1.
[20] Tempelman, A. (1992). Ergodic theorems for group actions, informational and thermodynamical aspects. Springer Dordrecht. DOI: https://doi.org/10.1007/978-94-017-1460-0.
[21] Von Neumann, J. (1932). Proof of the Quasi-ergodic Hypothesis. Proc. Natl. Acad. Sci, 18, 70–82. DOI: https://doi.org/10.1073/pnas.18.1.70.
[22] Walters, P. (1982). An introduction to ergodic theory. Springer-Verlag. DOI: https://doi.org/10.1007/springerreference_60354.
[23] Wiener, N. (1939). The ergodic theorem. Duke Math. J, 5, 1–18. DOI: https://doi.org/10.1215/S0012-7094-39-00501-6.
[24] Yosida, K. (1938). Mean ergodic theorem in Banach spaces. Proc. Imp. Acad, 14, 292–294. DOI: https://doi.org/10.3792/pia/1195579607.
[25] Yosida, K., & Kakutani, S. (1939). Birkhoff‘s ergodic theorem and the maximal ergodic theorem.
Proc. Imp. Acad, 15, 165–168. DOI: https://doi.org/10.3792/pia/1195579375.