[1] Abadie, B., & Dykema, K. (2009). Unique ergodicity of free shifts and some other automorphisms of C∗-algebras. J. Operator Theory, 61, 279–294.
[2] Accardi, L., & Mukhamedov, F. (2009). A note on noncommutative unique ergodicity and weighted means. Linear Algebra Appl, 430, 782–790. DOI: https://doi.org/10.1016/j.laa.2008.09.029.
[3] Austin, T., Eisner, T., & Tao, T. (2011). Nonconventional ergodic averages and multiple recurrence for von Neumann dynamical systems. Pacific J. Math, 250, 1–60. DOI: https://doi.org/10.2140/pjm.2011.250.1.
[4] Beyers, C., Duvenhage, R., & Stroh, A. (2010). The Szemeredi property in ergodic W∗-dynamical systems. J. Operator Theory, 64, 35–67.
[5] Birkhoff, G.D. (1931). Proof of the ergodic theorem. Proc. Natl. Acad. Sci, 17, 656–660. DOI: https://doi.org/10.1073/pnas.17.2.656.
[6] Connes, A., Narnhofer, H., & Thirring, W. (1987). Dynamical entropy of C∗-Algebras and von Neumann algebras. Commun. Math. Phys, 112, 691–719. DOI: https://doi.org/10.1007/BF01225381.
[7] Fidaleo, F. (2009). An ergodic theorem for quantum diagonal measures. Infin. Dimens. Anal. Quantum Probab. Relat. Top, 12, 307–320. DOI: https://doi.org/10.1142/S0219025709003665.
[8] Fidaleo, F. (2009). On strong ergodic properties of quantum dynamical systems. Infin. Dimens. Anal. Quantum Probab. Relat. Top, 12, 551–564. DOI: https://doi.org/10.1142/S0219025709003884.
[9] Kolmogorov, A.N. (1958). New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Doklady of Russian Academy of Sciences, 119, 851–864.
[10] Murphy, G.J. (1990). C∗-Algebras and Operator Theory. Academic Press, Inc. DOI: https://doi.org/10.1016/C2009-0-22289-6.
[11] Niculescu, C.P., Stroh, A., & Zsido, L. (2003). Noncommutative extensions of classical and multiple recurrence theorems. J. Operator Theory, 50, 3–52.
[12] Phelps, R. (2001). Lectures on Choquet’s Theorem. Springer-Verlag Berlin, Heidelberg (originally published by Van Nostrand, Princeton, 1966). DOI: https://doi.org/10.1007/b76887.
[13] Ruelle, D. (1973). Statistical mechanics on a compact set with Zν-action satisfying expansiveness and specification. Trans. Amer. Math. Soc, 185, 237–251. DOI: https://doi.org/10.2307/
1996437.
[14] Ruelle, D. (2004). Thermodynamic formalism. Cambridge Mathematical Library. Cambridge University Press, second edition, The mathematical structures of equilibrium statistical mechanics. DOI: https://doi.org/10.1017/CBO9780511617546.
[15] Sinai, Ya.G. (1959). On the notion of entropy of a dynamical system. Doklady of Russian Academy of Sciences, 124, 768–771. DOI: https://doi.org/10.1007/978-0-387-87870-6_1.
[16] Von Neumann, J. (1932). Proof of the Quasi-ergodic Hypothesis. Proc. Natl. Acad. Sci, 18, 70–82. DOI: https://doi.org/10.1073/pnas.18.1.70.
[17] Von Neumann, J. (1932). Physical Applications of the Ergodic Hypothesis. Proc. Natl. Acad. Sci, 18, 263–266. DOI: https://doi.org/10.1073/pnas.18.3.263.
[18] Von Neumann, J. (1999). Invariant measures. American Mathematical Society, ISBN 978-0-8218-0912-9.
[19] Walters, P. (1975). A variational principle for the pressure of continuous transformations. Amer. J. Math, 97, 937–971. DOI: https://doi.org/10.2307/2373682.
[20] Walters, P. (1982). An Introduction to Ergodic Theory. Springer-Verlag.
[21] Walters, P. (1986). Relative pressure, relative equilibrium states, compensation functions and manyto-one codes between subshifts. Trans. Amer. Math. Soc, 296, 1–31. DOI: https://doi.org/10.2307/2000558.