[1] Asgari, M.S., & Khosravi, A. (2005). Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl, 308, 541–553. DOI: https://doi.org/10.1016/j.jmaa.2004.11.036.
[2] Cahill, J., & Chen, X. (2013). A note on scalable frames. Proceedings of the 10th International Conference on Sampling Theory and Applications, 93–96.
[3] Casazza, P., Carli, L., & Tran, T. (2024). Piecewise scalable frames. Linear Algebra and its Applications, 694, 262–282. DOI: https://doi.org/10.1016/j.laa.2024.04.008.
[4] Casazza, P., & Chen, X. (2017). Frame scalings: A condition number approach. Linear Algebra and its Applications, 523, 152–168. DOI: https://doi.org/10.1016/j.laa.2017.02.020.
[5] Casazza, P., & Kutyniok, G. (2004). Frames of subspaces. Contemp. Math. Amer. Math. Soc, 345, 87–113.
[6] Casazza, P.G., & Kutyniok, G. (2013). Finite Frames: Theory and Applications. Birkhauser, New York. DOI: https://doi.org/10.1007/978-0-8176-8373-3.
[7] Christensen, O. (2008). Frames and Bases. Birkhauser, Boston. DOI: https://doi.org/10.1007/978-0-8176-4678-3.
[8] Daubechies, I., Grossmann, A., & Meyer, Y. (1986). Painless nonorthogonal expansions. J. Math. Phys, 27, 1271–1286. DOI: https://doi.org/10.1063/1.527388.
[9] Duffin, R.J., & Schaeffer, A.C. (1952). A class of nonharmonic Fourier series. Trans. Am. Math. Soc, 72, 341–366. DOI: https://doi.org/10.2307/1990760.
[10] Khosravi, A., & Farmani, M.R. (2024). Piecewise scalable frames in Hilbert spaces. International Journal of Wavelets, Multiresolution and Information Processing, 22(3), 2350052. DOI: https://doi.org/10.1142/S0219691323500522.
[11] Khosravi, A., & Khosravi, B. (2007). Frames and bases in tensor product of Hilbert spaces and Hilbert C∗-modules. Proc. Math. Sci, 117, 1–12. DOI: https://doi.org/10.1007/s12044-007-0001-5.
[12] Khosravi, A., & Mirzaee Azandaryani, M. (2014). Approximate duality of g-frames in Hilbert spaces. Acta Math. Sci, 34, 639–652. DOI: https://doi.org/10.1016/S0252-9602(14)60036-9.
[13] Kutyniok, G., Okoudjou, K.A., & Philipp, F. (2013). Scalable frames. Linear Algebra and its Applications, 438, 2225–2238. DOI: https://doi.org/10.1016/j.laa.2012.10.046.
[14] Sun, W. (2006). G-frames and g-Riesz bases. J. Math. Anal. Appl, 322, 437–452. DOI: https://doi.org/10.1016/j.jmaa.2005.09.039.