{**}^A-دوتصویری جبرهای باناخ بر پایه فضای ایده‌آل ماکسیمال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم ریاضی، دانشگاه ایلام، ایلام، ایران

2 دانشکده ریاضی و علوم کامپیوتر، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مقاله، مطالعۀ جبرهای باناخ {**}^A-دوتصویر را ادامه می‌دهیم و ارتباط آن‌ها را با مفهوم phi-میانگین‌پذیری بررسی می‌کنیم. 
{**}^A-دوتصویری جبرهای سگال و جبرهای ماتریسی پایین مثلثی را مطالعه می‌کنیم. همچنین، مفهوم جبرهای باناخ {**}^phi-A-دوتصویر را معرفی می‌کنیم و رابطۀ بین این مفهوم و phi-میانگین‌پذیری و phi-میانگین‌پذیری داخلی را به دست می‌آوریم. در نهایت، این مفهوم جدید، برای جبرهای باناخ خاص مانند جبرهای گروهی، جبرهای اندازه و جبرهای باناخ پایین مثلثی بررسی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A^{**}-biprojectivity of Banach algebras based on maximal ideal space

نویسندگان [English]

  • Amir Sahami 1
  • Mehdi Rostami 2
1 Department of Mathematics, Faculty of Basic Science, Ilam University, Ilam, Iran
2 Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran
چکیده [English]

In this paper, we continue the study of A^{**}-biprojectivity of Banach algebras, and the relation between this new notion and phi-amenability of Banach algebras is investigated. A^{**}-biprojectivity of Segal algebras and lower triangular matrix algebras is studied. Also, we introduce the notion of phi-A^{**}-biprojectivity of Banach algebras. Some examples indicate that this notion is weaker than A^{**}-biprojectivity. We obtain the relation between this notion and phi-amenability and phi-inner amenability. Finally, we investigate this new notion on certain Banach algebras such as group algebras, measure algebras, and lower triangular Banach algebras.

کلیدواژه‌ها [English]

  • Banach algebra
  • phi-A^{**}-biprojective
  • phi-inner amenable
  • Group algebra
  • Measure algebra
[1] Alaghmandan, M., Nasr-Isfahani, R., & Nemati, M. (2010). Character amenability and contractibility of abstract Segal algebras. Bull. Austral. Math. Soc, 82, 274–281. DOI: http://dx.doi.org/10.1017/S0004972710000286.
[2] Ghahramani, F., Loy, R.J.,
& Willis, G.A. (1996). Amenability and weak amenability of second conjugate Banach algebras. Proc. Amer. Math. Soc, 124, 1489–1497. DOI: https://doi.org/10.1090/s0002-9939-96-03177-2.
[3] Helemskii, A.Ya. (1989). The Homology of Banach and Topological Algebras.
Kluwer Academic Publishers, Holland. DOI: https://doi.org/10.1007/978-94-009-2354-6.
[4] Hewitt. E.,
& Ross, K.A. (1970). Abstract Harmonic Analysis I, Springer, Berlin. 
[5] Hu, Z., Monfared, M.S., & Traynor, T. (2009). On character amenable Banach algebras. Studia Math, 193, 53–78.
[6] Jabbari, A., Mehdi Abad, T.,
& Zaman Abadi, M. (2011). On ϕ-inner amenable Banach algebras. Colloq. Math, 122, 1–10. DOI: https://doi.org/10.4064/cm122-1-1.
[7] Javanshiri, H.,
& Nemati, M. (2018). Invariant ϕ-means for abstract Segal algebras related to locally compact groups. Bull. Belg. Math. Soc. Simon Stevin, 25, 687–698. DOI: http://dx.doi.org/10.36045/bbms/1547780429.
[8] Johnson, B.E. (1972). Cohomology in Banach algebras.
Mem. Amer. Math. Soc, 127.
[9] Johnson, B.E. (1972). Approximate diagonals and cohomology of certain annihilator Banach algebras.
Amer. J. Math, 94, 685–698. DOI: https://doi.org/10.2307/2373751.
[10] Kaniuth, E., Lau, A.T.,
& Pym, J. (2008). On ϕ-amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc, 144, 85–96. DOI: https://doi.org/10.1017/S0305004107000874.
[11] Kaniuth, E., Lau, A.T.,
& Pym, J. (2008). On character amenability of Banach algebras. J. Math. Anal. Appl, 344, 942–955. DOI: https://doi.org/10.1016/j.jmaa.2008.03.037.
[12] Lau, A.T. (1983). Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups.
Fund. Math, 118, 161–175. DOI: https://doi.org/10.4064/FM-118-3-161-175.
[13] Monfared, M.S. (2008). Character amenability of Banach algebras.
Math. Proc. Camb. Philos. Soc, 144, 697–706. DOI: https://doi.org/10.1017/S0305004108001126.
[14] Nasr-Isfahani, R. (2001). Inner amenability of Lau algebras.
Arch. Math, (Brno) 37, 45–55.
[15] Nasr Isfahani, R.,
& Soltani Renani, S. (2011). Character contractibility of Banach algebras and homological properties of Banach modules. Studia Math, 202, 205–225.
[16] Paterson, A.L.T. (1988). Amenability.
Math. Surveys Monogr, vol. 29, Amer. Math. Soc, Providence, RI.
[17] Pier, J.P. (1984). Amenability of Locally Compact Groups.
Pure Appl. Math. (N. Y.), John Wiley & Sons, Inc., New York. A Wiley-Interscience Publication.
[18] Reiter, H. (1971).
L1-algebras and Segal algebras. Lecture Notes in Mathematics, 231 Springer. DOI: https://doi.org/10.1007/BFb0060759.
[19] Rostami, M.,
& Sahami, A. (2023). A∗∗-biprojectivity of Banach algebras. Measure Algebras and Applications, 1(1), 128–140. DOI: http://doi.org/10.22091/MAA.2023.9829.1011.
[20] Runde, V. (2002). Lectures on Amenability, Lecture Notes in Mathematics (Volume 1774).
Springer Verlag, Berlin-Heidelberg-New York. DOI: https://doi.org/10.1007/b82937.
[21] Sahami, A. (2019). On left
ϕ-biprojectivity and left ϕ-biflatness of certain Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A, 81, 97–106. 
[22] Sahami, A., & Pourabbas, A. (2013). On ϕ-biflat and ϕ-biprojective Banach algebras. Bull. Belg. Math. Soc. Simon Stevin, 20, 789–801. DOI: https://doi.org/10.36045/bbms/1385390764.
[23] Zhang, Y. (1999). Nilpotent ideals in a class of Banach algebras.
Proc. Amer. Math. Soc, 127, 3237–3242. DOI: http://dx.doi.org/10.1090/S0002-9939-99-04896-0.