[1] Alaghmandan, M., Nasr-Isfahani, R., & Nemati, M. (2010). Character amenability and contractibility of abstract Segal algebras. Bull. Austral. Math. Soc, 82, 274–281. DOI: http://dx.doi.org/10.1017/S0004972710000286.
[2] Ghahramani, F., Loy, R.J., & Willis, G.A. (1996). Amenability and weak amenability of second conjugate Banach algebras. Proc. Amer. Math. Soc, 124, 1489–1497. DOI: https://doi.org/10.1090/s0002-9939-96-03177-2.
[3] Helemskii, A.Ya. (1989). The Homology of Banach and Topological Algebras. Kluwer Academic Publishers, Holland. DOI: https://doi.org/10.1007/978-94-009-2354-6.
[4] Hewitt. E., & Ross, K.A. (1970). Abstract Harmonic Analysis I, Springer, Berlin.
[5] Hu, Z., Monfared, M.S., & Traynor, T. (2009). On character amenable Banach algebras. Studia Math, 193, 53–78.
[6] Jabbari, A., Mehdi Abad, T., & Zaman Abadi, M. (2011). On ϕ-inner amenable Banach algebras. Colloq. Math, 122, 1–10. DOI: https://doi.org/10.4064/cm122-1-1.
[7] Javanshiri, H., & Nemati, M. (2018). Invariant ϕ-means for abstract Segal algebras related to locally compact groups. Bull. Belg. Math. Soc. Simon Stevin, 25, 687–698. DOI: http://dx.doi.org/10.36045/bbms/1547780429.
[8] Johnson, B.E. (1972). Cohomology in Banach algebras. Mem. Amer. Math. Soc, 127.
[9] Johnson, B.E. (1972). Approximate diagonals and cohomology of certain annihilator Banach algebras. Amer. J. Math, 94, 685–698. DOI: https://doi.org/10.2307/2373751.
[10] Kaniuth, E., Lau, A.T., & Pym, J. (2008). On ϕ-amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc, 144, 85–96. DOI: https://doi.org/10.1017/S0305004107000874.
[11] Kaniuth, E., Lau, A.T., & Pym, J. (2008). On character amenability of Banach algebras. J. Math. Anal. Appl, 344, 942–955. DOI: https://doi.org/10.1016/j.jmaa.2008.03.037.
[12] Lau, A.T. (1983). Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math, 118, 161–175. DOI: https://doi.org/10.4064/FM-118-3-161-175.
[13] Monfared, M.S. (2008). Character amenability of Banach algebras. Math. Proc. Camb. Philos. Soc, 144, 697–706. DOI: https://doi.org/10.1017/S0305004108001126.
[14] Nasr-Isfahani, R. (2001). Inner amenability of Lau algebras. Arch. Math, (Brno) 37, 45–55.
[15] Nasr Isfahani, R., & Soltani Renani, S. (2011). Character contractibility of Banach algebras and homological properties of Banach modules. Studia Math, 202, 205–225.
[16] Paterson, A.L.T. (1988). Amenability. Math. Surveys Monogr, vol. 29, Amer. Math. Soc, Providence, RI.
[17] Pier, J.P. (1984). Amenability of Locally Compact Groups. Pure Appl. Math. (N. Y.), John Wiley & Sons, Inc., New York. A Wiley-Interscience Publication.
[18] Reiter, H. (1971). L1-algebras and Segal algebras. Lecture Notes in Mathematics, 231 Springer. DOI: https://doi.org/10.1007/BFb0060759.
[19] Rostami, M., & Sahami, A. (2023). A∗∗-biprojectivity of Banach algebras. Measure Algebras and Applications, 1(1), 128–140. DOI: http://doi.org/10.22091/MAA.2023.9829.1011.
[20] Runde, V. (2002). Lectures on Amenability, Lecture Notes in Mathematics (Volume 1774). Springer Verlag, Berlin-Heidelberg-New York. DOI: https://doi.org/10.1007/b82937.
[21] Sahami, A. (2019). On left ϕ-biprojectivity and left ϕ-biflatness of certain Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A, 81, 97–106.
[22] Sahami, A., & Pourabbas, A. (2013). On ϕ-biflat and ϕ-biprojective Banach algebras. Bull. Belg. Math. Soc. Simon Stevin, 20, 789–801. DOI: https://doi.org/10.36045/bbms/1385390764.
[23] Zhang, Y. (1999). Nilpotent ideals in a class of Banach algebras. Proc. Amer. Math. Soc, 127, 3237–3242. DOI: http://dx.doi.org/10.1090/S0002-9939-99-04896-0.