[1] Aliprantis, C.D., & Burkinshaw, O. (2003). Locally Solid Riesz Spaces with Applications to Economics. Math Surveys and Monographs, Volume 105, American Math. Society.
[2] Birkhoff, G. (1967). Lattice Theory. A.M.S. Colloquium Publications.
[3] Bohnenblust, H.F. (1940). On axiomatic characterization of Lp-spaces. Duke Math. J, 6, 627–640. DOI: https://doi.org/10.1215/S0012-7094-40-00648-2.
[4] Chang, C.C. (1958). Algebraic analysis of many valued logics. Trans. Amer. Math. Soc, 88, 467–490. DOI: https://doi.org/10.2307/1993227.
[5] Cignoli, R., Ottaviano, I.M.L.D., & Mundici, D. (2000). Algebraic Foundations of manyvalued Reasoning. Kluwer Academic Publ, Dordrecht. DOI: https://doi.org/10.1007/978-94-015-9480-6.
[6] Darnel, M. (1995). Theory of lattice-ordered groups. Marcel Dekker, New York.
[7] Dominguez, X., & Tarieladze, V. (2008). Group topologies on vector spaces and character lifting properties. Bol. Soc. Mat. Mexicana (3), 14, 21–34.
[8] Folland, G.B. (1994). A Course in Abstract Harmonic Analysis. CRC Press. DOI: https://doi.org/10.1201/b19172.
[9] Folland, G.B. (1999). Real Analysis: Modern Techniques and Their Applications. Wiley, New York, second edition.
[10] Glass, A.M.W. (1999). Partially Ordered Groups. World Scientific Publishing Co. Pte. Ltd.
[11] Goodearl, K.R. (1986). Partially Ordered Abelian Groups With Interpolation. Amer. Mathematical Society (Mathematical Surveys and Monographs). DOI: https://doi.org/10.1090/surv/020.
[12] Gusic, I. (1998). A topology on lattice-ordered groups. Proc Amer Math Soc, 126(9), 2593–2597.
[13] Hahn, H. (1907). Uber die nichtarchimedischen Groben-systeme. Sitz. ber. K. Akad. der Wiss., Math. Nat. KI. IIa, 116, 601–655.
[14] Jordan, F., & Pajoohesh, H. (2018). Topologies on abelian lattice-ordered groups induced by a positive filter and completeness. Algebra Universalis, 79(62), 1–18. DOI: https://doi.org/10.1007/s00012-018-0543-7.
[15] Kadison, R.V. (1951). A representation theory for commutative topological algebra. Mem. A M S, No. 7.
[16] Kakutani, S. (1941). Concrete Representation of Abstract (L)-Spaces and the Mean Ergodic Theorem. Ann. of Math, 42, 523–537. DOI: https://doi.org/10.2307/1968915.
[17] Karamdoust, S., Myrnouri, H., & Pourgholamhossein, M. (2024). On the Boolean algebra induced by a unital ℓ-group. Algebra Universalis, 85, 16. DOI: https://doi.org/10.1007/s00012-024-00848-6.
[18] Kenderov, P. (1970). On topological vector groups. Mat. Sb, 10, 531–546. DOI: https://doi.org/10.1070/SM1970v010n04ABEH001679.
[19] Kopperman, R., Pajoohesh, H., & Richmond, T. (2011). Topologies arising from metrics valued in abelian ℓ-groups. Algebra Universalis, 65, 315–330. DOI: https://doi.org/10.1007/s00012-011-0132-5.
[20] Mundici, D. (1986). Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal, 65, 15–63. DOI: https://doi.org/10.1016/0022-1236(86)90015-7.
[21] Nakano, H. (1955). Semi-Ordered Linear Spaces. Japan Society for the Promotion of Science, Tokyo.
[22] Pagter. B. de. (1981). F-Algebras and Orthomorphisms. Ph. D. Dissertation, Leiden.
[23] Pourgholamhossein, M., & Ranjbar, M.A. (2019). On the topological mass Lattice Groups. Positivity, 23, 811–827. DOI: https://doi.org/10.1007/s11117-018-0639-5.
[24] Pourgholamhossein, M., & Ranjbar, M.A. (2022). Positive filters and links in an ℓ-group. Quaestiones Mathematicae, 45, 1297–1308. DOI: https://doi.org/10.2989/16073606.2021.1942287.
[25] Raikov, D.A. (1964). Free locally convex spaces for uniform spaces. Mat. Sb. (N.S), 63(105), 582–590.
[26] Raikov, D.A. (1968). On B-complete topological vector groups. Studia Math, 31, 295–306.
[27] Ranjbar, M.A., & Pourgholamhossein, M. (2020). Filter and weak link topologies. Algebra Universalis, 81, 41. DOI: https://doi.org/10.1007/s00012-020-00670-w.
[28] Wu, S., Luan, W., & Yang, Y. (2020). Filter topologies on MV -algebras ll. Soft Computing, 24, 3173–3177. DOI: https://doi.org/10.1007/s00500-020-04682-5.
[29] Yang, Y. (2009). The C-topology on lattice-ordered groups. Sci China Ser A, 52(11), 2397–2403. DOI: https://doi.org/10.1007/s11425-009-0098-3.