بررسی فضاهای L_p(G) به‌عنوان گروه‌های برداری مشبکه توپولوژیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 قم. آموزش‌وپرورش ناحیه چهارم

2 گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

در این مقاله، فضاهای L_p(G) را با رابطۀ ترتیب نقطه‌ای به‌عنوان فضاهای ریس در نظر می‌گیریم و دسته‌ای از توپولوژی‌های گروهی (با عمل جمع) مشبکه‌ای را روی آن‌ها بررسی خواهیم کرد. این توپولوژی‌ها که توپولوژی‌های فیلتری مثبت و یا توپولوژی‌های زنجیره‌ای نام دارند، در بسیاری از مواقع توپولوژی برداری نیستند، بدین معنا که عمل ضرب اسکالر در آن‌ها پیوستۀ توأم نیست، ولی بسیاری از ویژگی‌های مورد انتظار را دارند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

On the L_p(G) spaces as topological lattice vector groups

نویسندگان [English]

  • Mohammad Ali Ranjbar 1
  • Seyyed Hassan Myrnouri 2
1 Teacher and free researcher
2 Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
چکیده [English]

In this paper, we consider the L_p(G) spaces with pointwise ordering as Riesz spaces and investigate some lattice group topologies on them. In many cases, these topologies which are called link topologies or positive filter topologies are not vector topologies in the sense that the scalar multiplication is not continuous with respect to them, but they have many useful properties.

کلیدواژه‌ها [English]

  • ℓ-group. Unital ℓ-group
  • Order unit
  • Locally compact group
  • Haar measure
  • Riesz algebra
  • Topological lattice-ordered ring
[1] Aliprantis, C.D., & Burkinshaw, O. (2003). Locally Solid Riesz Spaces with Applications to Economics. Math Surveys and Monographs, Volume 105, American Math. Society.
[2] Birkhoff, G. (1967). Lattice Theory.
A.M.S. Colloquium Publications.
[3] Bohnenblust, H.F. (1940). On axiomatic characterization of
Lp-spaces. Duke Math. J, 6, 627–640. DOI: https://doi.org/10.1215/S0012-7094-40-00648-2.
[4] Chang, C.C. (1958). Algebraic analysis of many valued logics.
Trans. Amer. Math. Soc, 88, 467–490. DOI: https://doi.org/10.2307/1993227.
[5] Cignoli, R., Ottaviano, I.M.L.D.,
& Mundici, D. (2000). Algebraic Foundations of manyvalued Reasoning. Kluwer Academic Publ, Dordrecht. DOI: https://doi.org/10.1007/978-94-015-9480-6.
[6] Darnel, M. (1995). Theory of lattice-ordered groups.
Marcel Dekker, New York.
[7] Dominguez, X.,
& Tarieladze, V. (2008). Group topologies on vector spaces and character lifting properties. Bol. Soc. Mat. Mexicana (3), 14, 21–34.
[8] Folland, G.B. (1994). A Course in Abstract Harmonic Analysis.
CRC Press. DOI: https://doi.org/10.1201/b19172.   
[9] Folland, G.B. (1999). Real Analysis: Modern Techniques and Their Applications. Wiley, New York, second edition.
[10] Glass, A.M.W. (1999). Partially Ordered Groups.
World Scientific Publishing Co. Pte. Ltd.
[11] Goodearl, K.R. (1986). Partially Ordered Abelian Groups With Interpolation.
Amer. Mathematical Society (Mathematical Surveys and Monographs). DOI: https://doi.org/10.1090/surv/020.
[12] Gusic, I. (1998). A topology on lattice-ordered groups.
Proc Amer Math Soc, 126(9), 2593–2597.
[13] Hahn, H. (1907). Uber die nichtarchimedischen Groben-systeme.
Sitz. ber. K. Akad. der Wiss., Math. Nat. KI. IIa, 116, 601–655.
[14] Jordan, F.,
& Pajoohesh, H. (2018). Topologies on abelian lattice-ordered groups induced by a positive filter and completeness. Algebra Universalis, 79(62), 1–18. DOI: https://doi.org/10.1007/s00012-018-0543-7.
[15] Kadison, R.V. (1951). A representation theory for commutative topological algebra.
Mem. A M S, No. 7.
[16] Kakutani, S. (1941). Concrete Representation of Abstract (L)-Spaces and the Mean Ergodic Theorem.
Ann. of Math, 42, 523–537. DOI: https://doi.org/10.2307/1968915.
[17] Karamdoust, S., Myrnouri, H.,
& Pourgholamhossein, M. (2024). On the Boolean algebra induced by a unital -group. Algebra Universalis, 85, 16. DOI: https://doi.org/10.1007/s00012-024-00848-6.
[18] Kenderov, P. (1970). On topological vector groups.
Mat. Sb, 10, 531–546. DOI: https://doi.org/10.1070/SM1970v010n04ABEH001679.
[19] Kopperman, R., Pajoohesh, H.,
& Richmond, T. (2011). Topologies arising from metrics valued in abelian -groups. Algebra Universalis, 65, 315–330. DOI: https://doi.org/10.1007/s00012-011-0132-5.
[20] Mundici, D. (1986). Interpretation of AF C*-algebras in Lukasiewicz sentential calculus.
J. Funct. Anal, 65, 15–63. DOI: https://doi.org/10.1016/0022-1236(86)90015-7.
[21] Nakano, H. (1955). Semi-Ordered Linear Spaces.
Japan Society for the Promotion of Science, Tokyo.
[22] Pagter. B. de. (1981). F-Algebras and Orthomorphisms.
Ph. D. Dissertation, Leiden.
[23] Pourgholamhossein, M.,
& Ranjbar, M.A. (2019). On the topological mass Lattice Groups. Positivity, 23, 811–827. DOI: https://doi.org/10.1007/s11117-018-0639-5.
[24] Pourgholamhossein, M.,
& Ranjbar, M.A. (2022). Positive filters and links in an -group. Quaestiones Mathematicae, 45, 1297–1308. DOI: https://doi.org/10.2989/16073606.2021.1942287.
[25] Raikov, D.A. (1964). Free locally convex spaces for uniform spaces.
Mat. Sb. (N.S), 63(105), 582–590.   
[26] Raikov, D.A. (1968). On B-complete topological vector groups. Studia Math, 31, 295–306.
[27] Ranjbar, M.A.,
& Pourgholamhossein, M. (2020). Filter and weak link topologies. Algebra Universalis, 81, 41. DOI: https://doi.org/10.1007/s00012-020-00670-w.
[28] Wu, S., Luan, W.,
& Yang, Y. (2020). Filter topologies on MV -algebras ll. Soft Computing, 24, 3173–3177. DOI: https://doi.org/10.1007/s00500-020-04682-5.
[29] Yang, Y. (2009). The C-topology on lattice-ordered groups.
Sci China Ser A, 52(11), 2397–2403. DOI: https://doi.org/10.1007/s11425-009-0098-3.