{**}^A-دوتصویری جبرهای باناخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده ریاضی و علوم کامپیوتر، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشکده علوم ریاضی، دانشگاه ایلام، ایلام، ایران

چکیده

در این مقاله یک مفهوم همانستگی جدید مرتبط با جبرهای باناخ دوتصویر به نام جبرهای باناخ  {**}^A-دوتصویر ارائه می‌کنیم. ما به مطالعۀ رابطۀ بین این مفهوم و برخی مفاهیم همانستگی همچون میانگین‌پذیری، شبه میانگین‌پذیری و میانگین‌پذیری داخلی می‌پردازیم. همچنین این مفهوم جدید برای جبرهای باناخ خاص مانند جبرهای گروهی، جبرهای لیپشیتزی و جبرهای باناخ مثلثی بررسی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A^{**}-biprojectivity of Banach algebras

نویسندگان [English]

  • Mehdi Rostami 1
  • Amir Sahami 2
1 Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran
2 Department of Mathematics, Faculty of Basic Science, Ilam University, Ilam, Iran
چکیده [English]

In this paper, we introduce a new homological notion related to biprojective Banach algebras, namely A^{**}-biprojective Banach algebras. We study the relation between this new notion and the other homological notions, such as amenability, pseudo-amenability and inner amenability. Also, we investigate this new notion on certain Banach algebras such as group algebras, Lipschitz algebras and triangular Banach algebras.

کلیدواژه‌ها [English]

  • Amenable
  • A^{**}-biprojective
  • Inner amenable
  • Lipschitz algebra
  • Triangular algebra
[1] Dashti, M., Nasr Isfahani, R., & Soltani Renani, S. (2014). Character amenability of Lipschitz algebras. Canad. Math. Bull, 57(1), 37–41. DOI: https://doi.org/10.4153/CMB-2012-015-3.
[2] Forrest, B.E.,
& Marcoux, L.W. (2002). Weak amenability of triangular Banach algebras. Trans. Amer. Soc, 354(4), 1435–1452. DOI: https://doi.org/10.1090/s0002-9947-01-02957-9.
[3] Ghahramani, F., Loy, R.J.,
& Willis, G.A. (1996). Amenability and weak amenability of second conjugate Banach algebras. Proc. Amer. Math. Soc, 124, 1489–1497. DOI: https://doi.org/10.1090/s0002-9939-96-03177-2.
[4] Gourdeau, F. (1992). Amenability of Lipschitz algebras.
Math. Proc. Cambridge Philos. Soc, 112, 581–588. DOI: https://doi.org/10.1017/s0305004100071267.
[5] Helemskii, A.Ya. (1989). The Homology of Banach and Topological Algebras.
Kluwer Academic Publishers, Holland. DOI: https://doi.org/10.1007/978-94-009-2354-6.
[6] Hu, Z., Monfared, M.S.,
& Traynor, T. (2009). On character amenable Banach algebras. Studia Math, 193, 53–78. DOI: https://doi.org/10.4064/sm193-1-3.
[7] Jabbari, A., Mehdi Abad, T.,
& Zaman Abadi, M. (2011). On ϕ-inner amenable Banach algebras. Colloq. Math, 122, 1–10. DOI: https://doi.org/10.4064/cm122-1-1.
[8] Johnson, B.E. (1972). Cohomology in Banach algebras.
Mem. Amer. Math. Soc, 127.
[9] Johnson, B.E. (1972). Approximate diagonals and cohomology of certain annihilator Banach algebras.
Amer. J. Math, 94, 685–698. DOI: https://doi.org/10.2307/2373751.
[10] Kaniuth, E., Lau, A.T.,
& Pym, J. (2008). On ϕ-amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc, 144, 85–96. DOI: https://doi.org/10.1017/S0305004107000874.
[11] Kaniuth, E., Lau, A.T.,
& Pym, J. (2008). On character amenability of Banach algebras. J. Math. Anal. Appl, 344, 942–955. DOI: https://doi.org/10.1016/j.jmaa.2008.03.037. 
[12] Lau, A.T. (1983). Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math, 118, 161–175. DOI: https://doi.org/10.4064/FM-118-3-161-175.
[13] Monfared, M.S. (2008). Character amenability of Banach algebras.
Math. Proc. Camb. Philos. Soc, 144, 697–706. DOI: https://doi.org/10.1017/S0305004108001126.
[14] Nasr-Isfahani, R. (2001). Inner amenability of Lau algebras.
Arch. Math, (Brno) 37, 45–55.
[15] Sherbert, D.R. (1963). Banach algebras of Lipschitz functions.
Pacifc J. Math, 13(4), 1387–1399. DOI: https://doi.org/10.2140/pjm.1963.13.1387.