[1] Beiglböck, M., Bergelson, V., Hindman, N., & Strauss, D. (2006). Multiplicative structures in additively large sets. J. Combin. Theory Ser. A, 113, 1219–1242. DOI: https://doi.org/10.1016/j.jcta.2005.11.003.
[2] Beiglböck, M., Bergelson, V., Hindman, N., & Strauss, D. (2008). Some new results in multiplicative and additive Ramsey theory. Trans. Amer. Math. Soc, 360, 819–847. DOI: https://doi.org/10.1090/S0002-9947-07-04370-X.
[3] Bergelson, V. (1987). Ergodic Ramsey theory. Logic and combinatorics, 65, 63–87.
[4] Bergelson, V., & Leibman, A. (1996). Polynomial extension of van der Wearden’s and Szemeredi’s theorem. J. Amer. Math. Soc, 9, 725–753.
[5] Brauer, A. (1928). Ubre Sequenzen von Potenzresten. Sitzungsberichte de Preussischen Akademie der Wissenschaften, Physicalish-Mathematische Klasse, 9–16.
[6] Cilleruelo, J. (2012). Combinatorial problems in finite fields and Sidon sets. Combinatorica, 32, 497–511. DOI: https://doi.org/10.1007/s00493-012-2819-4.
[7] Deuber, W. (1973). Partitionen und lineare Gleichungssysteme. In Math. Z, 133, 109–123. DOI: https://doi.org/10.1007/BF01237897.
[8] Erdös, P., & Turan, P. (1936). On some sequences of integers. J. London Math. Soc, 11, 261–264. DOI: https://doi.org/10.1112/jlms/s1-11.4.261.
[9] Frantzikinakis, N., & Host, B. (2017). Higher order Fourier analysis of multiplicative functions and applications. J. Amer. Math. Soc, 30, 67–157. DOI: https://doi.org/10.1090/jams/857.
[10] Furstenberg, H. (1977). Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. d’Analyse math, 31, 204–256. DOI: https://doi.org/10.1007/BF02813304.
[11] Furstenberg, H., Katznelson, Y., & Orstein, D. (1979). The ergodic theoretical proof of Szemerédi’s theorem. Bull. Amer. Math. Soc, 7, 427–552. DOI: https://doi.org/10.1090/S0273-0979-1982-15052-2.
[12] Green, B., & Sanders, T. (2016). Monochoromatic sums and products. Dis. Anal. DOI: https://doi.org/10.19086/da.613.
[13] Hindman, N., & Strauss, D. (2012). Algebra in Stone-Cˇech compactification. Theory and application. De Gruyter Expositions in Mathematics, 27. Walter de Gruyter Co., Berlin. DOI: https://doi.org/10.1515/9783110258356.
[14] McCutcheon, R. (2010). A variant of density Hales-Jewett theorem. Bull. Lond. Math. Soc, 42,974–980. DOI: https://doi.org/10.1112/blms/bdq051.
[15] Moreira, J. (2016). Partition Regular Polynomial Patterns in Commutative Semigroups. Ohio State University.
[16] Moreira, J. (2017). Monochromatic sums and products in N. Annals of Math, 185, 1069–1090. DOI: https://doi.org/10.4007/annals.2017.185.3.10.
[17] Rado, R. (1943). Note on combinatorial analysis. Proc. London Math. Soc, 48, 122–160.
[18] Sárközy, A. (1978). On difference sets of sequences of integers. I. Acta Math. Acad. Sci. Hungar, 31, 125–149. DOI: https://doi.org/10.1007/BF01901984.
[19] Schur, I. (1916). Uber die Kongruenz xm + ym = zm(mod p). Jahresbericht der Deutschen Math.Verein, 25, 114–117.
[20] Shkredov, I.D. (2010). On monochromatic solutions of some nonlinear equations in Z=pZ. Math Notes, 88, 603–611. DOI: https://doi.org/10.1134/S0001434610090336.
[21] Szemerédi, E. (1975). On the sets of integers containing no k elements in arithmetic progressions. Acta. Arith, 27, 299–345. DOI: https://doi.org/10.4064/AA-27-1-199-245.
[22] Van der Waerden, B.L. (1927). Beweis einer Baudetsvhen Vermutung. Nieuw. Arch. Wisk, 15, 212–216.