[1] Ali, S.T., Antoine, J.P., & Gazeau, J.P. (1993). Continuous frames in Hilbert spaces. Ann. Physics, 222, 1–37. DOI: https://doi.org/10.1006/aphy.1993.1016.
[2] Christensen, O., & Laugesen, R.S. (2011). Approximate dual frames in Hilbert spaces and applications to Gabor frames. Sampl Theory Signal Image Process, 9, 77–90. DOI: https://doi.org/10.1007/BF03549525.
[3] Daubechies, I., Grossmann, A., & Meyer, Y. (1986). Painless nonorthogonal expansions. J. Math. Phys, 27, 1271–1283. DOI: https://doi.org/10.1063/1.527388.
[4] Duffin, R.J., & Schaeffer, A.C. (1952). A class of nonharmonic Fourier series. Trans. Amer. Math. Soc, 72, 341–366. DOI: https://doi.org/10.2307/1990760.
[5] Gabardo, J.P., & Han, D. (2003). Frame associated with measurable spaces. Adv. Comp. Math, 18, 127–147. DOI: https://doi.org/10.1023/A:1021312429186.
[6] Kaiser, G. (1994). A Friendly Guide to Wavelets. Birkhauser, Boston. DOI: https://doi.org/10.1007/978-0-8176-8111-1.
[7] Khosravi, A., & Mirzaee Azandaryani, M. (2014). Approximate duality of g-frames in Hilbert spaces. Acta. Math. Sci, 34, 639–652. DOI: https://doi.org/10.1016/S0252-9602(14)60036-9.
[8] Mirzaee Azandaryani, M. (2017). On the approximate duality of g-frames and fusion frames. U. P. B. Sci. Bull. Ser A, 79, 83–94.
[9] Mirzaee Azandaryani, M. (2020). An operator theory approach to the approximate duality of Hilbert space frames. J. Math. Anal. Appl, 489, 1–13 (124177). DOI: https://doi.org/10.1016/j.jmaa.2020.124177.
[10] Mirzaee Azandaryani, M., & Javadi, Z. (2022). Pseudo-duals of continuous frames in Hilbert spaces. J. Pseudo-Differ. Oper. Appl, 13, 1–16. DOI: https://doi.org/10.1007/s11868-022-00486-3.
[11] Rahimi, A., Darvishi, Z., & Daraby, B. (2019). Dual pair and approximate dual for continuous frames in Hilbert spaces. Math. Rep, 21, 173–191.
[12] Yousefzadeheyni, A., & Abdollahpour, M.R. (2020). Some properties of approximately dual continuous g-frames in Hilbert spaces. U. P. B. Sci. Bull. Ser A, 82, 183–194.