[1] Adler, R.L., Konheim, A.G., & McAndrew, M.H. (1965). Topological entropy. Trans. Amer. Math. Soc, 114, 309–319. DOI: https://doi.org/10.1090/S0002-9947-1965-0175106-9.
[2] Bowen, R. (1976). Invariant measures for Markov maps of the interval. Comm. Math. Physics, 69, 1–17. DOI: https://doi.org/10.1007/BF01941319.
[3] Breiman, L. (1957). The individual theorem of information theory. Ann of Math Stat, 28, 809–811; errata, 31 (1960), 809–810. DOI: https://doi.org/10.1214/aoms/1177706899.
[4] Brin, M., & Katok, A. (1983). On local entropy in geometric dynamics. 30–38, New York, SpringerVerlag, (Lecture Notes in Mathematics 1007). DOI: https://doi.org/10.1007/bfb0061408.
[5] Dinaburg, E.I. (1970). The relation between topological entropy and metric entropy. Soviet Math, 11, 13–16.
[6] Kolmogorov, A.N. (1958). New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Doklady of Russian Academy of Sciences, 119, 861–864.
[7] Mañé, R. (1987). Ergodic theory and differentiable dynamics. Springer-Verlag, Berlin, Heidelberg, New York. DOI: https://doi.org/10.1007/978-3-642-70335-5.
[8] McMillan, B. (1953). The basic theorems of information theory. Ann. of Math. Statistics, 24, 196–219. DOI: https://doi.org/10.1214/aoms/1177729028.
[9] Pesin, Ya. (1977). Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys, 32, 54–114. DOI: https://doi.org/10.1070/RM1977v032n04ABEH001639.
[10] Rahimi, M. (2021). A Spectral Representation for the Entropy of Topological Dynamical Systems. J Dyn Control Syst, 27, 573–584. DOI: https://doi.org/10.1007/s10883-020-09519-w.
[11] Rahimi, M., & Riazi, A. (2012). Entropy operator for continuous dynamical systems of finite topological entropy. Bulletin of the Iranian Mathematical Society, 38, 883–892.
[12] Rahimi, M., & Riazi, A. (2012). Entropy functional for continuous systems of finite entropy. Acta Mathematica Scientia, 32B, 775–782. DOI: https://doi.org/10.1016/S0252-9602(12)60057-5.
[13] Ruelle, D. (1987). An inequality for the entropy of differential maps. Bol. Soc. Bras. de Mat, 9, 83–87. DOI: https://doi.org/10.1007/bf02584795.
[14] Shannon, C. (1948). A mathematical theory of communication. Bell Syst. Tech. Journal, 27, 379–423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[15] Sinai, Ya.G. (1959). On the notion of entropy of a dynamical system. Doklady of Russian Academy of Sciences, 124, 768–771. DOI: https://doi.org/10.1007/978-0-387-87870-6_1.
[16] Walters, P. (1982). An introduction to ergodic theory. Springer-Verlag. DOI: https://doi.org/10.1007/springerreference_60354.