[1] Arambasic, L. (2007). On frames for countably generated Hilbert C∗-modules. Proc. Amer. Math. Soc, 135, 469–478. DOI: https://doi.org/10.1090/s0002-9939-06-08498-x.
[2] Asgari, M.S., & Khosravi, A. (2005). Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl, 308, 541–553. DOI: https://doi.org/10.1016/j.jmaa.2004.11.036.
[3] Bemrose, T., Casazza, P.G., Grochenig, K., Lammers, M.C., & Lynch, R.G. (2016). Weaving Frames. Operators and Matrices, 10, 1093–1110. DOI: https://doi.org/10.7153/oam-10-61.
[4] Bibak Hafshejani, A., & Dehghan, M.A. (2019). P-woven frames. J. Math. Anal. Appl, 479, 673–687.
DOI: https://doi.org/10.1016/j.jmaa.2019.06.044.
[5] Casazza, P.G., Freeman, D., & Lynch, R.G. (2016). Weaving Schauder frames. J. Approx. Theory,211, 42–60. DOI: https://doi.org/10.1016/j.jat.2016.07.001.
[6] Casazza, P.G., & Kutyniok, G. (2013). Finite Frames: Theory and Applications. Birkhauser, NewYork. DOI: https://doi.org/10.1007/978-0-8176-8373-3.
[7] Daubechies, I., Grossmann, A., & Meyer, Y. (1986). Painless nonorthogonal expansions. J. Math. Phys, 27, 1271–1286. DOI: https://doi.org/10.1063/1.527388.
[8] Duffin, R.J., & Schaeffer, A.C. (1952). A class of nonharmonic Fourier series. Trans. Am. Math. Soc, 72, 341–366. DOI: https://doi.org/10.2307/1990760.
[9] Frank, M., & Larson, D.R. (2002). Frames in Hilbert C∗-modules and C∗-algebras. J. Operator Theory, 48, 273–314.
[10] Jing, W. (2006). Frames in Hilbert C∗-modules. Ph.D. Thesis, University of Central Florida.
[11] Kasparov, G. (1980). Hilbert C∗-modules: The theorem of Stinespring and Voiculescu. J. Operator Theory, 4, 133–150. DOI: https://www.jstor.org/stable/24713855.
[12] Khosravi, A., & Khosravi, B. (2012). G-frames and modular Riesz bases in Hilbert C∗-modules. Int. J. Wavelets, Multiresolut. Inf. Process, 10, 1250013 (12 pages).DOI: https://doi.org/10.1142/S0219691312500130.
[13] Khosravi, A., & Mirzaee Azandaryani, M. (2014). Approximate duality of g-frames in Hilbert spaces. Acta Math. Sci, 34, 639–652. DOI: https://doi.org/10.1016/S0252-9602(14)60036-9.
[14] Khosravi, A., & Sohrabi, J. (2019). Weaving g-frames and weaving fusion frames. Bull. Malays. Math. Sci. Soc, 42, 3111–3129. DOI: https://doi.org/10.1007/s40840-018-0647-4.
[15] Lance, E.C. (1995). Hilbert C∗-modules-A toolkit for Operator Algebraists. London Math. Soc. Lecture Note Ser, Vol. 210, Cambridge Univ. Press.
[16] Murphy, G.J. (1990). C∗-Algebras and Operator Theory. Academic Press, San Diego. DOI: https://doi.org/10.1016/C2009-0-22289-6.
[17] Sun, W. (2006). G-frames and g-Riesz bases. J. Math. Anal. Appl, 322, 437–452. DOI: https://doi.org/10.1016/j.jmaa.2005.09.039.
[18] Zhao, X., & Li, P. (2021). Weaving frames in Hilbert C∗-modules. J. Math, 2021, 2228397 (13pages). DOI: https://doi.org/10.1155/2021/2228397.