[1] Aoki, T. (1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64–66. DOI: https://doi.org/10.2969/jmsj/00210064.
[2] Bodaghi, A., & Ebrahimdoost, Y. (2016). On the stability of quadratic reciprocal functional equation in non-Archimedean fields. Asian-European J. Math, 9(1), 9 pp. DOI: https://doi.org/10.1142/S1793557116500029.
[3] Bodaghi, A., & Kim, S.O. (2014). Approximation on the quadratic reciprocal functional equation. J. Func. Spac. Appl, Art. ID. 532463, 5 pp. DOI: http://dx.doi.org/10.1155/2014/532463.
[4] Diaz, J., & Margolis, B. (1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc, 74, 305–309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0.
[5] Găvruţa, P. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl, 184(3), 431–436. DOI: https://doi.org/10.1006/jmaa.1994.1211.
[6] Hyers, D.H. (1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A, 27, 222–224. DOI: https://doi.org/10.1073/pnas.27.4.222.
[7] Jung, S.M. (2009). A fixed point approach to the stability of the equation f(x+y) = ff((xx)+)ff(y(y)). Aust. J. Math. Anal. Appl, 6, 1–6.
[8] Kim, S.O., Senthil Kumar. B.V., & Bodaghi, A. (2017). Approximation on the reciprocalcubic and reciprocal-quartic functional equations in non-Archimedean fields. Adv. Differ. Equ, Paper No. 77. DOI: https://doi.org/10.1186/s13662-017-1128-z.
[9] Rassias, Th.M. (1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc, 72, 297–300. DOI: https://doi.org/10.2307/2042795.
[10] Ravi K., & Senthil Kumar, B.V. (2010). Ulam-Găvruţa-Rassias stability of Rassias Reciprocal functional equation. Global J. App. Math. Math. Sci, 3, 57–79.
[11] Sadani, I. (2025). Exploring the reciprocal functional equations: approximations in diverse spaces. Int. J. Maps Math, 8(1), 177–191.
[12] Senthil Kumar, B.V., Al-Shaqsi, K., & Sabarinathan, S. (2021). Approximate multiplicative inverse quadratic mappings. Adv. Math. Sci. J, 10(1), 199–209.
[13] Senthil Kumar, B.V., Dutta, H., & Sabarinathan, S. (2020). Fuzzy approximations of a multiplicative inverse cubic functional equation. Soft Computing, 24, 13285–13292. DOI: https://doi.org/10.1007/s00500-020-04741-x.
[14] Ulam, S.M. (1964). Problems in Modern Mathematic, Science Editions. John Wiley & Sons, Inc., New York.