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cal functional equations in this work. The
intriguing fact that harmonic points arise
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it is connected to the Rayleigh scattering
formula. The arguments of this equation
are connected to harmonic points at the
conclusion of this research.
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1. Introduction

The stability problem of functional equations was first raised by Ulam [14] in 1940 at the
University of Wisconsin. He asked whether an approximate solution of a functional equation
can be close to an exact solution. The following year, Hyers [6] gave the most powerful and
affirmative response to Ulam’s query about Banach spaces. In 1978, Aoki [1] expanded Hyers’
finding to include bounded functions. Hyers’ theorem was expanded by Rassias [9] by taking
into account an unbounded control function; see also [5].

There have been notable advancements in the study of the stability of reciprocal functional
equations in various Banach spaces over the years. In other words, Ravi and the second author
[10] defined the reciprocal functional equation for the first time as follows:

(1.1) R(r + s) =
R(r)R(s)

R(r) +R(s)
.

They obtained some stability results of a mapping on the space of non-zero real numbers. It is
obvious that the mapping R : R\{0} −→ R defined via R(r) = c

r is a solution of (1.1). Next,
Jung [7] established the stability of (1.1) by using a fixed point technique.

The first author and Kim [3] introduced the quadratic reciprocal functional equation

Q(2u+ v) +Q(2u− v) =
2Q(u)Q(v)[4Q(v) +Q(u)]

(4Q(v)−Q(u))2
(1.2)

for the first time. They also studied the Găvruta and Rassias stabilities for (1.2) on non-zero
real numbers; for modified version of (1.2), we refer to [2]. Next, a reciprocal-cubic functional
equation of the form
(1.3)

C(2ϑ1+ϑ2)+C(ϑ1+2ϑ2) =
9C(ϑ1)C(ϑ2)

[
C(ϑ1) + C(ϑ2) + 2C(ϑ1)

1
3C(ϑ2)

1
3

(
C(ϑ1)

1
3 + C(ϑ2)

1
3

)]
[
2C(ϑ1)

2
3 + 2C(ϑ2)

2
3 + 5C(ϑ1)

1
3C(ϑ2)

1
3

]3
was dealt with in [8] and also a general form of reciprocal-quartic was recently presented in
[11]. Note that other functional equation associated to reciprocal-cubic mappings as solutions
and moreover fuzzy approximations of a multiplicative inverse cubic functional equations were
considered in [13].

Recall from [8] that the first model of reciprocal-quartic functional equation is given as

(1.4) Q(2r + s) +Q(2r − s) =
2Q(r)Q(s)

[
Q(r) + 16Q(s) + 24

√
Q(r)Q(s)

]
[
4
√

Q(s)−
√
Q(r)

]4 .

It is easily verified that the reciprocal-cubic function C(r) = 1
r3

and the reciprocal-quartic
function Q(r) = 1

r4
are solutions of functional equations (1.3) and (1.4), respectively.

In this paper, we consider the rational form of quartic reciprocal functional equation

Q

(
pq

p+ 2q

)
+Q

(
pq

p− 2q

)
= Q

(
pq

2p+ q

)
+Q

(
pq

2p− q

)
+ 30Q(p)− 30Q(q).(1.5)

We study the general solutions of (1.5) and in continuation, we establish its various stabilities.
As an application of this equation, it is connected to the Rayleigh scattering formula. The
arguments of this equation are connected to harmonic points at the conclusion of this research.
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2. Fundamental results and stability with a fixed point approach

Here and subsequently, we assume that

A = {p ∈ R− {0} : p+ 2q ̸= 0, p− 2q ̸= 0, 2p+ q ̸= 0, 2p− q ̸= 0},

for all p, q ∈ R. In order to arrive at a significant fundamental property of equation (1.5), let us
rewrite it as follows:

(2.1) Q

(
q

1 + 2q
p

)
+Q

(
q

1− 2q
p

)
= Q

(
q

2 + q
p

)
+Q

(
q

2− q
p

)
+ 30Q(p)− 30Q(q).

Further in the following results, we assume that Q : A −→ R is a mapping with the condition
that Q(p) → 0 as p → ∞.

Proposition 2.1. Suppose that a mapping Q satisfies (2.1). Then, for any positive integer m,
the mapping Q also satisfies the general functional equations Q

( p
2m

)
= 24mQ(p), for all p ∈ A.

Proof. By our assumption that as p → ∞ and then replacing q with p, it is easy to arrive at
Q
(p
2

)
= 16Q(p), for all p ∈ A. One can easily prove that using induction process for any positive

integer m that Q
( p
2m

)
= 24mQ(p), for all p ∈ A. □

One can check that the mapping Q : A −→ R defined through Q(x) = c
x4 is a solution of

(1.5).

Definition 2.2. A mapping Q is called as a quartic reciprocal mapping if it satisfies equation
(1.5). Also, we call equation (1.5) to be a quartic reciprocal (rational form) functional equation.

Let Ω be a set. A function d : Ω×Ω −→ [0,∞] is said to be a generalized metric on Ω if and
only if d satisfies the statements

(i) d(η, ϑ) = 0 if and only if η = ϑ for all η, ϑ ∈ Ω;
(ii) d(η, ϑ) = d(ϑ, η) for all η, ϑ ∈ Ω;
(iii) d(η, ξ) ≤ d(η, ϑ) + d(ϑ, ξ) for all η, ϑ, ξ ∈ Ω.

Note that the only substantial difference of the generalized metric from the metric is that the
range of generalized metric includes the infinity.

In the sequel, we bring back few fundamental ideas concerning fixed point theory which will
be a backbone to obtain the major results of this study. The following significant theorem was
proved in [4].

Theorem 2.3. [4] Fixed point alternative theorem. Let (P, ρ) be a complete generalized
metric space and let Γ : P −→ P be a strictly contractive mapping (that is ρ(Γ(p),Γ(q) ≤
Mρ(p, q), for all p, q ∈ P and a Lipschitz constant 0 < M < 1). Then for each given element
p ∈ P, either ρ

(
Γmp,Γm+1p

)
= ∞ for all non-negative integers m or there exists a positive

integer m0 such that
(i) ρ

(
Γmp,Γm+1p

)
< ∞ for all m ≥ m0;

(ii) the sequence {Γm} converges to a fixed point q⋆ of Γ;
(iii) q⋆ is the unique fixed point of Γ in the set Σ = {q ∈ P| ρ(Γm0)p, q) < ∞};
(iv) ρ(q, q⋆) ≤ 1

1−M ρ(q,Γq) for all q ∈ Σ.

We apply the above fixed point theorem to prove the stability of equation (2.1). To arrive at
the major results, for a mapping Q : A −→ R, we designate a difference operator D : A×A −→ R
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as follows:

DQ(p, q) = Q

(
q

1 + 2q
p

)
+Q

(
q

1− 2q
p

)
−Q

(
q

2 + q
p

)
−Q

(
q

2− q
p

)
− 30Q(p) + 30Q(q)

for all p, q ∈ A.
Here, we prove the Găvruţa stability for the quartic reciprocal functional equation.

Theorem 2.4. Suppose that a mapping Q : A −→ R satisfies the following approximation for
all p, q ∈ A,

(2.2) |DQ(p, q)| ≤ β

(
1

p
,
1

q

)
,

where β : A× A −→ [0,∞) is a given function. Suppose a constant 0 < M < 1 exists such that
the mapping defined via p 7→ α(p) = β

(
0, 1p

)
has the property that α

(p
2

)
≤ 16Mα(p), for all

p ∈ A and the mapping β satisfies

(2.3) lim
m→∞

2−4mβ

(
2−m

p
,
2−m

q

)
= 0, for all p, q ∈ A.

Then, there exists a unique quartic reciprocal mapping Q : A −→ R such that

(2.4) |Q(p)−Q(p)| ≤ 1

1−M
α(p),

for all p ∈ A.

Proof. Let us define a set B as the set of functions from A to R and introduce the generalized
metric ρ on B as:

(2.5) ρ(f, g) = ρα(f, g) = inf{K > 0 : |f(p)− g(p)| ≤ Kα(p), for all p ∈ A}.

One can easily verify that (B, ρ) is complete. Also, let η : B −→ B be a mapping defined by

ηg(p) =
1

16
g
(p
2

)
, (p ∈ A),

for all g ∈ B. Let us claim that η is strictly contractive on B. For given f, g ∈ B, let
Kfg ∈ [0,∞] be an arbitrary constant with ρ(f, g) ≤ Kfg. Consequently, ρ(f, g) < Kfg and so
|f(p)− g(p)| ≤ Kfgα(p) for all p ∈ A. This implies that∣∣∣∣ 116f (p2)− 1

16
g
(p
2

)∣∣∣∣ ≤ 1

16
Kfgα

(p
2

)
,

for all p ∈ A. Thus, ∣∣∣∣ 116f (p2)− 1

16
g
(p
2

)∣∣∣∣ ≤ MKfgα(p),

for all p ∈ A. Therefore, ρ(ηf, ηg) ≤ MKfg. Hence, we find that ρ(ηf, ηg) ≤ Mρ(f, g) for all
f, g ∈ B, that is, ρ is strictly contractive mapping of B, with the Lipschitz constant M . Now,
swapping (p, q) with (0, q) in (2.2), we obtain∣∣∣∣16Q(p2)−Q(p)

∣∣∣∣ ≤ β(0, q) = α(p),

for all p ∈ A. Therefore, from (2.5), we get ρ(ηQ,Q) ≤ 1. Hence, by the application of fixed
point alternative Theorem 2.3, we find a function Q : A −→ R satisfying the following:
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(i) Q is a fixed point of ρ, that is

(2.6) Q
(p
2

)
= 16Q(p),

for all p ∈ A. The mapping Q is the unique fixed point of ρ in the set

λ = {h ∈ B : ρ(Q,h) < ∞}.

This implies that Q is the unique mapping satisfying (2.6) such that there exists K > 0

satisfying
|Q(p)−Q(p)| ≤ Kα(p)

for all p ∈ A.
(ii) We have ρ(ηmQ,Q) → 0 as m → ∞. Hence, we get

(2.7) lim
m→∞

24mQ
(
2−mp

)
= Q(p),

for all p ∈ A.
(iii) We have ρ(Q,Q) ≤ 1

1−M ρ(Q, ηQ), which implies ρ(Q,Q) ≤ 1
1−M .

Thus, inequality (2.4) is now valid. Further, by using (2.2), (2.3) and (2.7), we obtain

|DQ(p, q)| = lim
m→∞

24mDQ
(
2−mp, 2−mq

)
≤ lim

m→∞
24mβ

(
2−m

p
,
2−m

q

)
= 0,

for all p, q ∈ A. Hence, Q satisfies (2.1) and therefore Q : A −→ R is a quartic reciprocal
mapping. Next, we show that Q is unique. Suppose Q′ : A −→ R is another quartic reciprocal
mapping satisfying (2.1) and (2.4). Due to the fact that the mapping Q′ is a fixed point of ρ
and ρ(Q,Q′) < ∞, we have Q′ ∈ B⋆ = {h ∈ B|ρ(f, h) < ∞}. From Theorem 2.3 (iii) and since
both Q and Q′ are fixed points of ρ , we have Q = Q′. Therefore, we conclude that Q is unique.
This completes the proof. □

Similar to Theorem 2.4, we have the following result. Since the proof is similar, it is omitted.

Theorem 2.5. Suppose that a mapping Q : A −→ R satisfies the inequality (2.1). If 0 < M < 1

is a constant such that the mapping p 7→ α(p) = 16β(0, 2q) has the property that α(2p) ≤
1
16Mα(p), for all p ∈ A and a mapping β : A× A −→ [0,∞) satisfies the condition

lim
m→∞

24mβ

(
2m

p
,
2m

q

)
= 0, for all p, q ∈ A,

then there exists a unique quartic reciprocal mapping Q : A −→ R such that

|Q(p)−Q(p)| ≤ 1

1−M
α(p),

for all p ∈ A.

In the upcoming corollaries, we present the stability results of equation (2.1) under different
upper bounds by applying Theorem 2.4 and Theorem 2.5.

Corollary 2.6. Suppose that a mapping Q : A −→ R satisfies the inequality

|DQ(p, q)| ≤ δ,

for all p, q ∈ A, where δ > 0 is a constant which is independent of p, q. Then, there exists a
unique quartic reciprocal mapping Q : A −→ R which satisfies (2.1) such that

|Q(p)−Q(p)| ≤ 2δ,

for all p ∈ A.
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Proof. The desired result follows from Theorem 2.4 by considering β
(
1
p ,

1
q

)
= δ, for all p, q ∈ A

and M = 1
2 . □

Corollary 2.7. Suppose that Q : A −→ R is a mapping fulfills the approximation

|DQ(p, q)| ≤ θ

(∣∣∣∣1p
∣∣∣∣a + ∣∣∣∣1q

∣∣∣∣a) ,

for all p, q ∈ A. Then, there exists a unique quartic reciprocal mapping Q : A −→ R which
satisfies (2.1) such that

|Q(p)−Q(p)| ≤


2a+4θ
2a+4−1

∣∣∣1p ∣∣∣a ;
θ

1−2a+4

∣∣∣1p ∣∣∣a ,
for all p ∈ R.

Proof. The desired result can be attained via Theorems 2.4 and 2.5 by choosing β
(
1
p ,

1
q

)
=

θ
(∣∣∣1p ∣∣∣a + ∣∣∣1q ∣∣∣a) and respectively, M = 2−a−4 and M = 2a+4. □

3. Relevance of equation (1.5) to the Rayleigh scattering formula

Rayleigh’s scattering formula states that the intensity of light (I) is inversely proportional to
the fourth power of the wavelength (λ). That is, I ∝ 1

λ4 . If p is the wavelength of a light, then
by the solution of equation (1.5), we can say Q(p) is the intensity of light. Hence, the solution of
equation (1.5) suggests that equation (1.5) can be related with the Rayleigh’s scattering formula.
The left-hand side of equation (1.5) represents the sum of the intensities of light corresponding to
the wavelengths pq

p+2q and pq
p−2q . This sum is equal to combined intensities of light corresponding

to the wavelengths pq
2p+q , pq

2p−q together with an additional contribution of 30 times the intensity
of light at wavelength p and a subtraction of 30 times the intensity of light at wavelength q.
Therefore, equation (1.5) expresses an intensity balance, that is, the total intensity associated
with one pair of harmonically related wavelengths is conserved, up to weighted contributions
from the fundamental wavelengths p and q.

3.1. Concluding remarks of obtained results with harmonic reciprocal points. Sup-
pose p and q are two fixed points on the real line. Then, the harmonic reciprocal points are
obtained by taking harmonic combinations in reciprocal coordinates, which is expressed as
x = pq

ap±bq . The harmonic reciprocal points arise in projective geometry. Let 1
x = 1

p ± 2
q or

1
x = 2

p ± 1
q . The arguments involved in equation (1.5) form two symmetric harmonic pairs in

reciprocal space. The following Figure 1 exhibits the arguments of equation (1.5) balance each
other symmetrically around p and q. Hence, the quartic reciprocal mapping preserves weighted

Figure 1. Harmonic reciprocal points
(

pq
p+2q ,

pq
p−2q ,

pq
2p+q ,

pq
2p−q

)
sums over harmonic reciprocal configurations. Moreover, the equation (1.5) compares the val-
ues of Q at two projectively equivalent harmonic configurations. From the stability results of
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equation (1.5), we observe that the function Q is almost invariant under harmonic reciprocal
transformations. Thus, the stability result quantifies the rigidity of harmonic reciprocal geome-
try.
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