[1] Alshybani, S., Vaezpour, S.M., & Mahmood, S.J. (2019). Generalized Hyers-Ulam stability of mixed type additive-quadratic functional equation of random homomorphisms in random normed algebras. J. Phys. Conf. Ser, 1294, 1–9, DOI: https://doi.org/10.1088/1742-6596/1294/3/032004.
[2] Alshybani, S., Vaezpour, S.M., & Saadati, R. (2017). Generalized Hyers-Ulam stability of mixed type additive-quadratic functional equation in random normed spaces. J. Math. Anal, 8(5), 12–26.
[3] Bae, J.H., & Chang, L.S. (2018). Some additive mappings on Banach ∗-algebras with derivations. J. Nonlinear Sci. Appl, 11, 335–341. DOI: https://doi.org/10.22436/jnsa.011.03.02.
[4] Baktash, E., Cho, Y.J., Jalili, M., Saadati, R., & Vaezpour, S.M. (2008). On the stability of cubic mappings and quadratic mappings in random normed spaces. J. Inequal. Appl. DOI: https://doi.org/10.1155/2008/902187.
[5] Bratteli, O., Kishimoto, A., & Robinson, D.W. (2008). Approximately inner derivations. Math. Scand, 103, 141–160. DOI: https://doi.org/10.7146/math.scand.a-15074.
[6] Bresar, M., & Vukman, J. (1990). On left derivations and related mappings. Proc. Amer. Math. Soc, 110, 7–16. DOI: https://doi.org/10.1090/s0002-9939-1990-1028284-3.
[7] Hyers, D.H. (1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA, 27, 222–224.
[8] Khodaei, H., & Rassias, T.M. (2010). Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl, 1, 22–41. DOI: https://doi.org/10.22075/ijnaa.2010.66.
[9] Madadian, M., Ebadian, A., Eshaghi Gordji, M., & Azadi Kenary, H. (2012). Approximate homomorphisms and derivations on random Banach algebras. J. Inequal. Appl, 157, 1–7. DOI: https://doi.org/10.1186/1029-242X-2012-157.
[10] Miura, T., Hirasawa, G., & Takahasi, S.E. (2006). A perturbation of ring derivations on Banach algebras. J. Math. Anal. Appl, 319, 522–530. DOI: https://doi.org/10.1016/j.jmaa.2005.06.060.
[11] Rassias, T.M. (1978). On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc, 72, 297–300. DOI: https://doi.org/10.2307/2042795.
[12] Schweizer, B., & Sklar, A. (1983). Probabilistic Metric Spaces. Elsevier, Amsterdam.
[13] Semrl, P. (1994). The functional equation of multiplicative derivation is superstable on standard operator algebras. Integr Equat Oper Th, 18, 118–122.
[14] Thomas, M.P. (1988). The image of a derivation is contained in the radical. Ann. of Math,128, 435–460. DOI: https://doi.org/10.2307/1971432.
[15] Ulam, S.M. (1964). Problems in Modern Mathematics. Science Editions, Chapter VI, Wiley, New York.