On Some Mappings on Random Banach *-Algebras with Derivations

Document Type : Original Article

Authors

Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran.

Abstract

This paper investigates the stability of certain linear mappings on random Banach $ *- $algebras with derivations. We establish several theorems concerning additive mappings and derivations in these spaces, extending classical results to the probabilistic setting. Our main contributions include proving the existence and uniqueness of additive mappings satisfying specific functional inequalities and demonstrating conditions under which such mappings become derivations.

Keywords

Main Subjects


[1] Alshybani, S., Vaezpour, S.M., & Mahmood, S.J. (2019). Generalized Hyers-Ulam stability of mixed type additive-quadratic functional equation of random homomorphisms in random normed algebras. J. Phys. Conf. Ser, 1294, 1–9, DOI: https://doi.org/10.1088/1742-6596/1294/3/032004.
[2] Alshybani, S., Vaezpour, S.M., & Saadati, R. (2017). Generalized Hyers-Ulam stability of mixed type additive-quadratic functional equation in random normed spaces.
J. Math. Anal, 8(5), 12–26.
[3] Bae, J.H., & Chang, L.S. (2018). Some additive mappings on Banach
∗-algebras with derivations. J. Nonlinear Sci. Appl, 11, 335–341. DOI: https://doi.org/10.22436/jnsa.011.03.02.
[4] Baktash, E., Cho, Y.J., Jalili, M., Saadati, R., & Vaezpour, S.M. (2008). On the stability of cubic mappings and quadratic mappings in random normed spaces.
J. Inequal. Appl. DOI: https://doi.org/10.1155/2008/902187.
[5] Bratteli, O., Kishimoto, A., & Robinson, D.W. (2008). Approximately inner derivations.
Math. Scand, 103, 141–160. DOI: https://doi.org/10.7146/math.scand.a-15074.
[6] Bresar, M., & Vukman, J. (1990). On left derivations and related mappings.
Proc. Amer. Math. Soc, 110, 7–16. DOI: https://doi.org/10.1090/s0002-9939-1990-1028284-3.
[7] Hyers, D.H. (1941). On the stability of the linear functional equation.
Proc. Natl. Acad. Sci. USA, 27, 222–224.
[8] Khodaei, H., & Rassias, T.M. (2010). Approximately generalized additive functions in several variables.
Int. J. Nonlinear Anal. Appl, 1, 22–41. DOI: https://doi.org/10.22075/ijnaa.2010.66.
[9] Madadian, M., Ebadian, A., Eshaghi Gordji, M., & Azadi Kenary, H. (2012). Approximate homomorphisms and derivations on random Banach algebras.
J. Inequal. Appl, 157, 1–7. DOI: https://doi.org/10.1186/1029-242X-2012-157.
[10] Miura, T., Hirasawa, G., & Takahasi, S.E. (2006). A perturbation of ring derivations on Banach algebras.
J. Math. Anal. Appl, 319, 522–530. DOI: https://doi.org/10.1016/j.jmaa.2005.06.060.
[11] Rassias, T.M. (1978). On the stability of the linear mapping in Banach spaces.
Proc. Am. Math. Soc, 72, 297–300. DOI: https://doi.org/10.2307/2042795.
[12] Schweizer, B., & Sklar, A. (1983). Probabilistic Metric Spaces.
Elsevier, Amsterdam.
[13] Semrl, P. (1994). The functional equation of multiplicative derivation is superstable on standard operator algebras.
Integr Equat Oper Th, 18, 118–122.
[14] Thomas, M.P. (1988). The image of a derivation is contained in the radical.
Ann. of Math,128, 435–460. DOI: https://doi.org/10.2307/1971432.
[15] Ulam, S.M. (1964). Problems in Modern Mathematics.
Science Editions, Chapter VI, Wiley, New York.