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On Some Mappings on Random Banach ∗−Algebras with Derivations

1. Introduction

The investigation of derivations in random Banach algebras represents an emerging and sig-
nificant area within functional analysis and operator algebras. This field primarily focuses on
the stability of random functional equations under conditions of uncertainty. The foundational
concept of stability for functional equations was first introduced by Ulam in 1940 [15]. Sub-
sequently, Hyers provided a fundamental result by establishing the stability of the additive
functional equation in Banach spaces [7]. This work was later generalized by Rassias, who
introduced a more flexible framework for functional approximations under variable bounds [11].

During the early 21st century, stability theory was extended to the study of approximate
derivations in Banach algebras. Researchers examined whether mappings approximately satis-
fying the derivation condition D(xy) ≈ D(x)y+ xD(y) could be approximated by exact deriva-
tions [5, 6, 10, 13, 14]. Concurrently, random Banach algebras were developed as probabilistic
extensions of classical Banach algebras, providing a robust framework for modeling stochastic
systems and phenomena involving uncertainty. These structures have since played a crucial role
in stochastic analysis and probability theory.

The intersection of these two research directions has led to growing interest in random deriva-
tions within random Banach algebras. Recent studies have explored whether Hyers-Ulam stabil-
ity properties hold in these probabilistic settings and whether approximate random derivations
can be closely approximated by exact ones [1, 2, 9]. Contemporary applications of these results
span diverse areas including stochastic analysis, quantum mechanics, and uncertainty quantifi-
cation.

In what follows, we adopt the standard terminology, notation, and conventions of random
normed space theory as presented in [8, 12].

2. Preliminaries and Basic Definitions

This section introduces the fundamental concepts and definitions required for our subsequent
analysis. We begin with the basic structures of random normed spaces and gradually build up
to random Banach ∗−algebras.

Definition 2.1 (Distribution Functions). Let △+ denote the space of distribution functions,
defined as:

△+ :=
{
F : R ∪ {−∞,∞} → [0, 1] :F is left-continuous and non-decreasing on R,

F (0) = 0, and F (+∞) = 1
}
.

The subset D+ ⊆ △+ is given by:

D+ =
{
F ∈ △+ : ℓ−F (+∞) = 1

}
,

where ℓ−f(x) denotes the left limit of function f at point x.

The space △+ is partially ordered by pointwise comparison: F ≤ G if and only if F (t) ≤ G(t)

for all t ∈ R. The maximal element in this ordering is the distribution function:

ε0(t) =

0, t ≤ 0,

1, t > 0.

Definition 2.2 (Triangular Norms). A continuous triangular norm (briefly, a t-norm) is a
function T : [0, 1]× [0, 1] → [0, 1] satisfying:

(1) Commutativity and associativity: T (a, b) = T (b, a) and T (a, T (b, c)) = T (T (a, b), c);
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(2) Continuity: T is continuous as a two-variable function;
(3) Boundary condition: T (a, 1) = a for all a ∈ [0, 1];
(4) Monotonicity: T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d.

Common examples of continuous t-norms include:
• The product t-norm: Tp(a, b) = ab.
• The minimum t-norm: TM (a, b) = min(a, b).
• The Łukasiewicz t-norm: TL(a, b) = max(a+ b− 1, 0).

For a t-norm T and a sequence {xn} in [0, 1], we define recursively:

Tn
i=1xi =

x1, n = 1,

T (Tn−1
i=1 xi, xn), n ≥ 2,

and denote T∞
i=nxi = T∞

i=1xn+i.

Definition 2.3 (Random Normed Spaces). A random normed space (RN-space) is a triple
(X,Λ, T ), where:

• X is a vector space over R or C;
• T is a continuous t-norm;
• Λ : X → D+ (with Λx denoting Λ(x)) satisfies:
(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) Λαx(t) = Λx

(
t
|α|

)
for all x ∈ X, α ̸= 0;

(RN3) Λx+y(t+ s) ≥ T (Λx(t),Λy(s)) for all x, y ∈ X, t, s ≥ 0.

Definition 2.4 (Convergence and Completeness in RN-spaces). Let (X,Λ, T ) be an RN-space.
(1) A sequence {xn} in X converges to x ∈ X if for every ε > 0 and λ > 0, there exists

N ∈ N such that Λxn−x(ε) > 1− λ for all n ≥ N .
(2) A sequence {xn} in X is Cauchy if for every ε > 0 and λ > 0, there exists N ∈ N such

that Λxn−xm(ε) > 1− λ for all n,m ≥ N , n ≥ m.
(3) An RN-space is complete if every Cauchy sequence converges. A complete RN-space is

called a random Banach space.

Theorem 2.5 ([12]). If (X,Λ, T ) is an RN-space and {xn} converges to x, then limn→∞ Λxn(t) =

Λx(t) almost everywhere.

Definition 2.6 (Random Normed Algebras). A random normed algebra is a random normed
space (X,Λ, T ) with an additional algebraic structure satisfying:

Λxy(ts) = Λx(t)Λy(s) for all x, y ∈ X, t, s > 0.

A complete random normed algebra is called a random Banach algebra.

Definition 2.7 (Random Banach ∗−Algebras). A random Banach ∗−algebra is a random
Banach algebra (X,Λ, T ) equipped with an involution ∗ : X → X satisfying for all x, y ∈ X and
scalars a, b:

• x∗∗ = x;
• (ax+ by)∗ = āx∗ + b̄y∗;
• (xy)∗ = y∗x∗.

Definition 2.8 (Derivations on Random Banach ∗−Algebras). Let X be a random Banach
∗−algebra. A derivation on X is a mapping µ : X → X satisfying:

µ(xy) = xµ(y) + µ(x)y for all x, y ∈ X.
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3. Main Results

In this section, we present our main results concerning additive mappings and derivations on
random Banach ∗−algebras. Throughout, we denote by Tε := {eiθ : 0 ≤ θ ≤ ε} and by e the
unit element when it exists.

Theorem 3.1. Let (X,Λ, T ) be a complex random Banach ∗−algebra and let ξ : X2 → D+

(with ξx,y denoting ξ(x, y)) be a mapping satisfying:

lim
n→∞

ξ2nx,2ny(2
nt) = 1,(3.1)

lim
n→∞

T∞
ℓ=1

(
ξ2n+ℓx,2n+ℓy

(
2n+ℓt

))
= 1(3.2)

for all x, y ∈ X and t > 0. Suppose f : X → X is a function satisfying the following inequalities
for all x, y ∈ X and t > 0:

Λf(x+y)−f(x)−f(y)(t) ≥ ξx,y(t),(3.3)

Λf(xy∗+yx∗)−f(x)y∗−xf(y∗)−f(y)x∗−yf(x∗)(t) ≥ ξx,y(t).(3.4)

Then there exists a unique additive mapping F : X → X such that:

F (xy∗ + yx∗) = F (x)y∗ + xF (y∗) + F (y)x∗ + yF (x∗),(3.5)

Λf(x)−F (x)(t) ≥ T∞
ℓ=1

(
ξ2ℓx,2ℓx

(
2ℓt

))
,(3.6)

x[F (y)− f(y)] = 0 for all x, y ∈ X.(3.7)

Proof. We divide the proof into several logical steps.
Step 1: Construction of the additive mapping. Setting y = x in (3.3) yields:

Λf(2x)−2f(x)(t) ≥ ξx,x(t) for all x ∈ X, t > 0,

which implies:
Λ f(2x)

2
−f(x)

(t) ≥ ξx,x(2t).

Iterating this process, we obtain for any positive integer n:

Λ f(2n+1x)

2n+1 − f(2nx)
2n

(t) ≥ ξ2nx,2nx(2
n+1t).

By induction, we derive the following key inequality:

(3.8) Λ f(2nx)
2n

−f(x)
(t) ≥ Tn

ℓ=1

(
ξ2ℓx,2ℓx

(
2ℓt

))
for all x ∈ X, t > 0.

Replacing x by 2mx in (3.8) gives:

Λ f(2n+mx)

2n+m − f(2mx)
2m

(t) ≥ Tn
ℓ=1

(
ξ2ℓ+mx,2ℓ+mx

(
2ℓ+mt

))
.

From condition (3.2), the right-hand side tends to 1 as n,m → ∞. Therefore,
{

f(2nx)
2n

}∞

n=1
is

a Cauchy sequence in the complete space X, hence convergent. Define:

F (x) := lim
n→∞

f(2nx)

2n
for all x ∈ X.

Step 2: Additivity of F . Replacing x, y by 2nx, 2ny in (3.3) and dividing by 2n yields:

Λ f(2n(x+y))
2n

− f(2nx)
2n

− f(2ny)
2n

(t) ≥ ξ2nx,2ny(2
nt).

Taking the limit as n → ∞ and using (3.1) gives F (x+ y) = F (x) + F (y).
Step 3: Proof of approximation inequality (3.6). Taking the limit as n → ∞ in (3.8) yields (3.6).
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Step 4: Uniqueness of F . Suppose F ′ is another additive mapping satisfying (3.6). Then for any
x ∈ X and t > 0:

ΛF (x)−F ′(x)(t) = ΛF (2nx)−F ′(2nx)(2
nt)

≥ T
(
ΛF (2nx)−f(2nx)(2

n−1t),Λf(2nx)−F ′(2nx)(2
n−1t)

)
≥ T

(
T∞
ℓ=1

(
ξ2ℓ+nx,2ℓ+nx

(
2n+ℓ−1t

))
, T∞

ℓ=1

(
ξ2ℓ+nx,2ℓ+nx

(
2n+ℓ−1t

)))
.

Letting n → ∞ gives ΛF (x)−F ′(x)(t) = 1 for all t > 0, hence F = F ′.
Step 5: Proof of property (3.5). Replacing x by 2nx in (3.4) gives:

Λf(2nxy∗+2nyx∗)−f(2nx)y∗−2nxf(y∗)−2nf(y)x∗−yf(2nx∗)(t) ≥ ξ2nx,y(t).

Dividing by 2n and taking n → ∞ using (3.1) and (3) yields:

(†) F (xy∗ + yx∗) = F (x)y∗ − xf(y∗)− f(y)x∗ − yF (x∗).

Applying (†) to different arrangements gives:

2nF (x)y∗ + 2nxf(y∗) + 2nf(y)x∗ + 2nyF (x∗) = F (2nx · y∗ + y · 2nx∗)

= F (x · 2ny∗ + 2ny · x∗)

= 2nF (x)y∗ + xf(2ny∗) + f(2ny)x∗ + 2nyF (x∗).

Thus we obtain:

(‡) xF (y∗) + F (y)x∗ = lim
n→∞

[
x
f(2ny∗)

2n
+

f(2ny)

2n
x∗

]
= xf(y∗) + f(y)x∗.

Combining (†) and (‡) yields (3.5).
Step 6: Proof of annihilation property (3.7). Multiplying (‡) by i gives:

ixF (y∗) + iF (y)x∗ = ixf(y∗) + if(y)x∗.

Replacing x by ix in (‡) yields:

ixF (y∗)− iF (y)x∗ = ixf(y∗)− if(y)x∗.

Subtracting these two equations gives 2iF (y)x∗ = 2if(y)x∗, which simplifies to x∗[F (y) −
f(y)] = 0 for all x, y ∈ X. Since the involution is bijective, this is equivalent to (3.7). □

Theorem 3.2. Let (X,Λ, T ) be a unital complex random Banach ∗−algebra and let ξ : X2 → D+

satisfy the conditions of Theorem 3.1. Suppose f : X → X is a mapping such that for all
x, y ∈ X, λ ∈ Tε, and t > 0:

Λf(λx+λy)−λf(x)−λf(y)(t) ≥ ξx,y(t),

and inequality (3.4) holds. Then f is a derivation on X.

Proof. Taking λ = 1 in (3.2) shows that f satisfies the conditions of Theorem 3.1. Hence, there
exists a unique additive mapping F : X → X satisfying (3.5), (3.6), and (3.7).
Linearity of F . Setting y = x in (3.2) gives:

Λf(2λx)−2λf(x)(t) ≥ ξx,x(t) for all λ ∈ Tε.

Replacing x by 2nx and dividing by 2n+1 yields:

Λ f(2n+1λx)

2n+1 −λf(2nx)
2n

(t) ≥ ξ2nx,2nx(2
n+1t).

Taking n → ∞ and using (3) gives F (λx) = λF (x) for all λ ∈ Tε.
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Identification of f and F . Since X is unital, setting x = e in (3.7) gives F (y) = f(y) for all
y ∈ X. Thus f = F , and in particular, f satisfies (3.5):

(⋆) f(xy∗ + yx∗) = f(x)y∗ + xf(y∗) + f(y)x∗ + yf(x∗).

Derivation property. Replacing y by iy in (⋆) yields:

−if(xy∗) + if(yx∗) = −if(x)y∗ − ixf(y∗) + if(y)x∗ + iyf(x∗).

Multiplying by i gives:

(⋆⋆) f(xy∗)− f(yx∗) = f(x)y∗ + xf(y∗)− f(y)x∗ − yf(x∗).

Adding (⋆) and (⋆⋆) and dividing by 2 yields:

f(xy∗) = f(x)y∗ + xf(y∗).

Finally, setting y = y∗ gives the derivation property:

f(xy) = f(x)y + xf(y) for all x, y ∈ X.

□

Corollary 3.3. Let (X,Λ, T ) be a semiprime unital complex random Banach ∗−algebra and let
ξ : X2 → D+ satisfy the conditions of Theorem 3.1. If f : X → X satisfies inequalities (3.3)
and (3.4), then f is a derivation on X.

Proof. Since X is unital, Theorem 3.1 applies, and setting x = e in (3.7) gives f = F . In
particular, f satisfies (⋆) from the previous proof.

Define for each x ∈ X:

D(x) := f(x2)− f(x)x− xf(x).

Setting y = x∗ in (⋆) yields:

(1) D(x) +D(x∗) = 0 for all x ∈ X.

Setting y = xy∗ + yx∗ in (⋆) and simplifying gives:

f(x(y + y∗)x∗) = −D(x)y∗ − yD(x∗) + f(x)(y + y∗)x∗ + x(y + y∗)f(x∗) + xf(y + y∗)x∗.

Taking y = y − y∗ in this equation yields:

(2) D(x)(y − y∗)− (y − y∗)D(x∗) = 0 for all x, y ∈ X.

Multiplying (2) by i gives one relation, while replacing y by iy in (2) gives another. Combining
these yields:

(3) D(x)y = yD(x∗) for all x, y ∈ X.

Setting y = e in (3) gives D(x) = D(x∗). Combining with (1) gives D(x) = 0 for all x ∈ X.
Therefore:

f(x2) = f(x)x+ xf(x) for all x ∈ X,

so f is a Jordan derivation. Since X is semiprime, every Jordan derivation is a derivation,
completing the proof. □
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