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On Some Mappings on Random Banach x—Algebras with Derivations
1. Introduction

The investigation of derivations in random Banach algebras represents an emerging and sig-
nificant area within functional analysis and operator algebras. This field primarily focuses on
the stability of random functional equations under conditions of uncertainty. The foundational
concept of stability for functional equations was first introduced by Ulam in 1940 [15]. Sub-
sequently, Hyers provided a fundamental result by establishing the stability of the additive
functional equation in Banach spaces [7]. This work was later generalized by Rassias, who
introduced a more flexible framework for functional approximations under variable bounds [11].

During the early 21st century, stability theory was extended to the study of approximate
derivations in Banach algebras. Researchers examined whether mappings approximately satis-
fying the derivation condition D(zy) ~ D(z)y + xD(y) could be approximated by exact deriva-
tions [0, 0, 10, 13, 14]. Concurrently, random Banach algebras were developed as probabilistic
extensions of classical Banach algebras, providing a robust framework for modeling stochastic
systems and phenomena involving uncertainty. These structures have since played a crucial role
in stochastic analysis and probability theory.

The intersection of these two research directions has led to growing interest in random deriva-
tions within random Banach algebras. Recent studies have explored whether Hyers-Ulam stabil-
ity properties hold in these probabilistic settings and whether approximate random derivations
can be closely approximated by exact ones [1, 2, 9]. Contemporary applications of these results
span diverse areas including stochastic analysis, quantum mechanics, and uncertainty quantifi-
cation.

In what follows, we adopt the standard terminology, notation, and conventions of random
normed space theory as presented in [3, 12].

2. Preliminaries and Basic Definitions

This section introduces the fundamental concepts and definitions required for our subsequent
analysis. We begin with the basic structures of random normed spaces and gradually build up
to random Banach x—algebras.

Definition 2.1 (Distribution Functions). Let AT denote the space of distribution functions,
defined as:

AT :={F :RU{—00,00} = [0,1] :F is left-continuous and non-decreasing on R,
F(0) =0, and F(+o00) = 1}.
The subset DT C AT is given by:
Dt ={FeAt: 0 F(+o0) =1},
where = f(x) denotes the left limit of function f at point x.

The space AT is partially ordered by pointwise comparison: F' < G if and only if F(t) < G(t)
for all ¢ € R. The maximal element in this ordering is the distribution function:
0, t<0,
1, t>0.

eo(t) =

Definition 2.2 (Triangular Norms). A continuous triangular norm (briefly, a t-norm) is a
function T : [0,1] x [0,1] — [0, 1] satisfying:

(1) Commutativity and associativity: T(a,b) = T(b,a) and T'(a,T(b,c)) =T(T(a,b),c);
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(2) Continuity: T is continuous as a two-variable function;
(3) Boundary condition: T(a,1) = a for all a € [0,1];
(4) Monotonicity: T(a,b) < T(c,d) whenever a < c and b < d.
Common examples of continuous t-norms include:
e The product t-norm: T),(a,b) = ab.
e The minimum ¢-norm: Tys(a,b) = min(a,b).
e The Lukasiewicz t-norm: T (a,b) = max(a+ b — 1,0).

For a t-norm T and a sequence {z,} in [0, 1], we define recursively:

r1, n=1,

i=1 n—1
T(j—;‘:l l’i,l‘n), n> 27

and denote T0:X, x; = T2°| 4.

Definition 2.3 (Random Normed Spaces). A random normed space (RN-space) is a triple
(X,\,T), where:

e X is a vector space over R or C;

e T is a continuous t-norm;

o A: X — DT (with A, denoting A(x)) satisfies:

(RN1) Ay (t) = eo(t) for all t > 0 if and only if x = 0;

(RN2) Apa(t) = Ay (ﬁ) forallz € X, a# 0;

(RN3) Agyy(t +5) > T(Ay(t), Ay(s)) forall z,y € X, t,s > 0.

Definition 2.4 (Convergence and Completeness in RN-spaces). Let (X, A, T) be an RN-space.

(1) A sequence {z,} in X converges to x € X if for every e > 0 and X\ > 0, there exists
N € N such that Ay, —4(¢) > 1 — X for alln > N.

(2) A sequence {x,} in X is Cauchy if for every e >0 and X\ > 0, there exists N € N such
that Ay, —z,,(€) > 1 =X for alln,m > N, n > m.

(8) An RN-space is complete if every Cauchy sequence converges. A complete RN-space is

called a random Banach space.

Theorem 2.5 ([12]). If (X, A, T) is an RN-space and {x,,} converges to z, then lim, oo Ay, (t) =

A, (t) almost everywhere.

Definition 2.6 (Random Normed Algebras). A random normed algebra is a random normed

space (X, A, T) with an additional algebraic structure satisfying:
Agy(ts) = Ap(t)Ay(s) forallz,ye X, t,s > 0.
A complete random normed algebra is called a random Banach algebra.

Definition 2.7 (Random Banach s—Algebras). A random Banach x—algebra is a random
Banach algebra (X, A, T) equipped with an involution * : X — X satisfying for all x,y € X and

scalars a, b:
o ™ =g
o (ar +by)* = ax* + by*;
o (zy)* =y z*.

Definition 2.8 (Derivations on Random Banach x—Algebras). Let X be a random Banach
x—algebra. A derivation on X is a mapping p: X — X satisfying:

w(zy) = xu(y) + ,u(g:%y forall z,y € X.
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3. Main Results

In this section, we present our main results concerning additive mappings and derivations on
random Banach x—algebras. Throughout, we denote by 7. := {e? : 0 < # < ¢} and by e the

unit element when it exists.

Theorem 3.1. Let (X,A,T) be a complex random Banach x—algebra and let £ : X? — D+
(with &, denoting &(x,y)) be a mapping satisfying:

. oy

(31) nli)nolo ggnx72ny(2 t) = 1,

(3.2) lim T2, (gw% . (2n+et)) 1
n—0o0 ’

forallz,y € X andt > 0. Suppose f: X — X is a function satisfying the following inequalities
forallz,y € X and t > 0:

(33) Af(achy)ff(x)ff(y) (t) > fgg,y(t),
(3.4) Af(ay yar)— f@y o f )~ fa—yf o) (8) 2 Eay (D).
Then there exists a unique additive mapping F' : X — X such that:

(3.5) F(xy® +yz™) = F(2)y* + 2F(y*) + F(y)z™ + yF(z"),
(3.6) A ®) = T2 (G ea (2) )
(3.7) z[F(y) — f(y)] =0 forallz,y € X.

Proof. We divide the proof into several logical steps.
Step 1: Construction of the additive mapping. Setting y = x in (3.3) yields:

Af(gx)_Qf(x) (t) > fx@(t) forallz € X, t >0,
which implies:
A s t) > &z 2(20).
@—f(w)( )= ¢ ; (2¢)

Iterating this process, we obtain for any positive integer n:

Af(2n+1a,-> _ f(@"=) (t) > f2"z,2"a:(2n+1t)-
2n+1 on

By induction, we derive the following key inequality:
(3.8) Mg (8) > Ty (52%72% (2%)) for all z € X, t > 0.
2n
Replacing = by 2™z in (3.8) gives:

Af(2n+mz) _ f(2ma) (t) 2 Ténzl (§2€+mx722+m$ <2£+mt)) .
om

on+m

n 00
From condition (3.2), the right-hand side tends to 1 as n,m — oo. Therefore, {f(gna:) } is
n=1
a Cauchy sequence in the complete space X, hence convergent. Define:

2n
F(z):= lim f(2nx) for all x € X.

n—0o0

Step 2: Additivity of F. Replacing x,y by 2"x,2"y in (3.3) and dividing by 2" yields:

A SO ) @0 5 (t) > Eang any(2").

Taking the limit as n — oo and using (3.1) gives F(z +y) = F(x) + F(y).

Step 3: Proof of approximation inequality (3.6). Taking the limit as n — oo in (3.8) yields (3.6).
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Step 4: Uniqueness of F. Suppose F” is another additive mapping satisfying (3.6). Then for any
rxe X and t>0:
Ap(@)—rr(2)(t) = MAp@na)—Fr(2na) (2"t)
> T (Ap(na)— f@na) (277 1), Apng)—pr(ang (27 '1))

2 T <T£O§1 (€2€+n172£+nx <2n+£71t>> 7T€O:OI <£2£+n:072£+nx (2n+€71t>>> .

Letting n — 00 gives Ap(y)—pr(z)(t) = 1 for all t > 0, hence F = F".
Step 5: Proof of property (3.5). Replacing x by 2"x in (3.4) gives:
A f(nays tomyes)—f@ra)ys—2ma ()2 fg)as —yf 2na) (1) 2 Eonay (1)

Dividing by 2" and taking n — oo using (3.1) and (3) yields:
(1) Flzy® +yz*) = F(a)y" —2f(y") — f(y)z" —yF (")
Applying (1) to different arrangements gives:
2"F(z)y* + 2" f(y") + 2" f(y)a™ + 2"yF(2*) = F(2"z - y* +y - 2"x™)
=F(zx-2"y* 4+ 2"y - z¥)
= 2"F(x)y” +f(2"y") + F2 y)a" + 2"y F(27).

Thus we obtain:

0 eF(y) + F(y)a® = tim o2 2V I ol oy 4 fy)an,

n—00 n an

Combining (1) and (1) yields (3.5).
Step 6: Proof of annihilation property (3.7). Multiplying (f) by ¢ gives:
iwF(y*) +iF(y)z” =iz f(y*) +if (y)z".
Replacing z by iz in (1) yields:
iwF(y") —iF(y)z* =iz f(y*) —if(y)z".
Subtracting these two equations gives 2iF(y)z* = 2if(y)z*, which simplifies to z*[F(y) —
f(y)] =0 for all x,y € X. Since the involution is bijective, this is equivalent to (3.7). O

Theorem 3.2. Let (X, A, T) be a unital complex random Banach *—algebra and let ¢ : X% — D+
satisfy the conditions of Theorem 5.1. Suppose f : X — X is a mapping such that for all
r,y € X, Nel,, andt > 0:

Af Oty =2 f@)=rf(y) (B) = Exy(t),
and inequality (3.4) holds. Then f is a derivation on X.

Proof. Taking A =1 in (3.2) shows that f satisfies the conditions of Theorem 3.1. Hence, there
exists a unique additive mapping F' : X — X satisfying (3.5), (3.6), and (3.7).
Linearity of F. Setting y = x in (3.2) gives:

Af(Q)\;B)—Q)\f(a:) (t) > £x,z(t) for all A € Ty.

Replacing « by 2"z and dividing by 2"+ yields:

Af(2n+1,\x) _Af(2x) (t) > 52"x,2”x(2n+1t)'
on+1 on
Taking n — oo and using (3) gives F'(Az) = AF(z) for all A € T.
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Identification of f and F. Since X is unital, setting x = e in (3.7) gives F(y) = f(y) for all
y € X. Thus f = F, and in particular, f satisfies (3.5):

(*)  flay" +yz") = f(2)y" +2f(y") + fy)z" +yf(z").
Derivation property. Replacing y by iy in (x) yields:
—if(xy") +if(ya”) = —if(x)y" —ixf(y*) +if ()" +iyf(z").
Multiplying by i gives:
() flay®) = flya®) = f@)y* +2f (") — fy)a™ —yf(@7).
Adding (%) and (+%) and dividing by 2 yields:
flay®) = f@)y” + 2 f(y7).
Finally, setting y = y* gives the derivation property:
flay) = f@)y+af(y) forallz,ye X.

O

Corollary 3.3. Let (X, A, T) be a semiprime unital complex random Banach x—algebra and let
€ : X2 — D% satisfy the conditions of Theorem 3.1. If f : X — X satisfies inequalities (3.3)
and (3.4), then f is a derivation on X.

Proof. Since X is unital, Theorem 3.1 applies, and setting = = e in (3.7) gives f = F. In
particular, f satisfies (x) from the previous proof.
Define for each z € X:

D(x) := f(a?) — f(z)z — 2 f(x).
Setting y = x* in (*) yields:
(1) D(z)+ D(z*) =0 forallx € X.

Setting y = xy* + ya™ in (x) and simplifying gives:
f@(y+y")a") = =D(x)y” —yD(@") + f(z)(y +y")a" +a(y + y*) f(@7) + = f(y + y7)z".
Taking y = y — y* in this equation yields:
(2) D@)(y—y")—(y—y")D(@") =0 forallz,ye X.

Multiplying (2) by 4 gives one relation, while replacing y by iy in (2) gives another. Combining
these yields:

(3) D(z)y =yD(z*) forall z,y € X.

Setting y = e in (3) gives D(x) = D(z*). Combining with (1) gives D(z) = 0 for all z € X.
Therefore:

f(z?) = f(x)x+zf(x) forall z € X,

so f is a Jordan derivation. Since X is semiprime, every Jordan derivation is a derivation,

completing the proof. O
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