[1] Atkinson, K.E. (1989). An Introduction to Numerical Analysis (2nd ed.). John Wiley & Sons, New York.
[2] Bhatia, R. (2006). Interpolating the arithmetic–geometric mean inequality and its operator version. Linear Algebra Appl, 413, 355–363. DOI: https://doi.org/10.1016/j.laa.2005.03.005.
[3] Hardy, G.H., Littlewood, J.E., & Pólya, G. (1952). Inequalities (2nd ed.). Cambridge University Press, Cambridge. [4] Kittaneh, F., & Manasrah, Y. (2010). Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl, 361, 262–269. DOI: https://doi.org/10.1016/j.jmaa.2009.08.059.
[5] Murphy, G.J. (1990). C∗-Algebras and Operator Theory. Academic Press, Boston.
[6] Sababheh, M., & Moslehian, M.S. (2017). Advanced refinements of Young and Heinz inequalities. Journal of Number Theory, 172, 178–199. DOI: https://doi.org/10.1016/j.jnt.2016.08.009.
[7] Samea, H., & Shafiei, G. (2025). Interpolating the Heinz and Pólya inequality and its operator version. Acta Scientiarum Mathematicarum (Szeged), to appear.
[8] Shafiei, M., & Ghazanfari, A.G. (2018). Numerous refinements of Pólya and Heinz operator inequalities. Linear and Multilinear Algebra, 66, 852–860. DOI: https://doi.org/10.1080/03081087.2017.1329815.
[9] Zou, L. (2013). Matrix versions of the classical Pólya inequality. ScienceAsia, 39, 204–207. DOI: https://doi.org/10.2306/scienceasia1513-1874.2013.39.204.