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We refine the classical Heinz and Pélya in-
equalities by establishing sharper bounds
and developing a unified interpolation
framework that applies to real num-
bers, matrices, and strictly positive ele-
ments of both unital and non-unital C*-
algebras. Motivated by numerical inac-
curacies in earlier quadrature approxima-
tions, we introduce several new quadrature
schemes—adaptive, higher-order, and hy-
brid Gaussian—adaptive—and demonstrate
their effectiveness in estimating the integral
representation of the logarithmic mean.
These refinements yield improved inequal-
ities lying strictly between the logarith-
mic mean and the Heinz—Heron interpo-
lating mean Fij/3. We further generalize
these results to operator settings, including
non-commutative cases, spectral perturba-
tions, and multi-operator frameworks, and
provide examples illustrating the sharpness
of the new bounds. The methods devel-
oped here enhance both the theoretical un-
derstanding and numerical precision of in-
equalities central to operator theory and
matrix analysis.
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Interpolating Heinz and Pélya Inequalities

1. Preliminaries

The Heinz and Pélya inequalities constitute fundamental tools in matrix and operator analysis,

connecting the arithmetic, geometric, logarithmic, and interpolating means. Their origins trace

back to the classical work of Hardy, Littlewood, and Pélya [3], and they continue to influence

modern developments in operator inequalities, numerical integration, and functional calculus

[2, 6, 9]

Recent advances include operator-theoretic extensions of the Heinz and Heron means [7] and

precision improvements of integral formulas for the logarithmic mean [3]. In particular, numer-

ical approaches based on trapezoidal-type quadrature exhibit instability when the integrand is

strictly convex, such as v — H)(a,b), motivating the development of more robust and accurate

approximation schemes.

The main purpose of this paper is threefold:

(1)

Refined scalar inequalities. We introduce several new quadrature approximations—
adaptive, higher-order, and hybrid Gaussian—adaptive—which produce sharper estimates

of the logarithmic mean

1
L(a,b) = /0 H,(a,b) dv.

These yield families of means lying strictly between L(a,b) and the Heinz—Heron inter-
polating mean Fj /3(a,b).

Operator generalizations. For strictly positive operators 7,5 in a (possibly non-
unital) C*-algebra, we extend the scalar results and prove

L(T, S) < My(T,S) < Fy3(T, S),

where M,, denotes various operator-valued quadrature means. The analysis covers non-
commutative settings, spectral comparison conditions, and perturbations of the form
T+R,S+R.

Multi-operator versions. For an m-tuple of strictly positive operators, we construct
multi-variable quadrature means and prove inequalities between the corresponding multi-
operator logarithmic and Heinz—Heron means.

Before stating our main results, we briefly review the basic means used in this work. For

a,b>0and 0 <v <1, the weighted arithmetic and geometric means are

aV,b = (1—-v)a+ v, a#t,b= a7V,

The Heinz mean, Heron mean, and logarithmic mean are respectively defined by

a#,b+ a#1-,b

Hl/(a’? b) = 2

F,(a,b) = (1 —v)(a#b) + v(aVb),

1
L(a,b) = /0 H,(a,b) dv.

A classical inequality of Pélya asserts that if a # b then

L(a, b) < F1/3(a, b)

The refinements introduced in this paper sharpen the above inequality, provide new quadrature-

based approximations, and generalize all such results to broad operator-theoretic settings.

o7



Measure Algebras and Applications, Year. 2025, Vol. 3, No. 1, pp. 55-65
2. Refinements of Heinz and Pdlya Inequalities

In this section we develop refined quadrature approximations for integrals of strictly convex
functions and apply them to the Heinz mean

a#yb + a#lfub

H,(a,b) = 5 ,

a,b>0, ab.

These refinements yield mean values situated strictly between the logarithmic mean

1
L(a,b) = / H,(a,b) dv
0
and the Heinz—Heron interpolating mean F} /3(a, b).

2.1. Trapezoidal approximation for convex integrands. Let ¢ : [ag,by] — R be twice
continuously differentiable and strictly convex, i.e. ¢”(¢) > 0 on [ag, by]. Its trapezoidal approx-
imation with n subintervals is

n—1
Tolp) = 502—na0 (so(ao) +¢(bo) + 22@(@0 i - a0)> .

=1

Proposition 2.1. If ¢ is strictly convex on [ag, by, then:

(1) For alln € N,

bo
(2.1) / o) dt < Tusi(e) < Tu(e).

ag

(2) For every e > 0 there exists

(bo — ap)?
=1 0~ Y7 (¢
10 { +\/ 12¢ terﬁi}ljo}so ®)

T () < /bo p(t)dt +¢.

ag

such that

Proof. The classical error formula for the trapezoidal rule gives

(bO - a0)3 1"

bo
[ o= 1o)== S ) e e (anb)

ap
Since ¢"(¢,) > 0, the difference is negative. Hence:

(bo —a0)® [ ¥"(cn)  ¢"(cn-1)
: 120 <(n+1)2 o n? : ) <0

/@<nwm Toir() — Tul) =

Thus the chain (2.1) holds.
For (2), the absolute error bound

12n2
implies
(b()l;nc;g)d max 4,0" <E§,
and solving for n yields the claimed bound. O
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Interpolating Heinz and Pélya Inequalities

Example 2.2. Let p(t) = t% on [0,1]. Then:

1
v, 1 3 7
thdi = 3, Ta(p) = 2 T53(¢) = 5-
0
Hence

5 < Tle) < Tale),

in agreement with Proposition 2.1.

2.2. Application to the Heinz mean. Define the trapezoidal Heinz approximation

n—1
T, (a,b) = (\/»+a+b+2z /nab>

Theorem 2.3. Let a,b >0, a#0b. Then:
(1) For alln € N,

L(a’7 b) < Tn+1(a7 b) < Tn(a7 b)

ng= |1+ i avb In
o 12 Fy5(a,b) — L(a,b)

then Ty (a,b) < Fy/3(a,b).

(2) 1If

b

1l

Proof. Let p(v) = Hy(a,b) for v € [0,1]. Then

@' (v) =

so ¢ is strictly convex. Applying Proposition 2.1 on [0, 1] proves (1).
For (2), set

At by 200/8) > 0,

e %(Fl/g(a, b) — L(a,b)).

Using Proposition 2.1(2) with ¢” constant gives the stated formula for ng.

Example 2.4. Fora=1,b=2,
L(1,2) ~ 1.4427, F1/3(1,2) ~~ 1.4472, T5(1,2) ~ 1.4571.

Thus
L(1,2) < T»(1,2) < F1/3(1, 2).

2.3. Adaptive refinements. Define the adaptive quadrature mean
Tadab Zwl H;/p(a,b),

where

wozwn_lzi, wi:% (1<i<n-2), Zwi:n/z

Theorem 2.5. Let a,b >0, a #b. Then:

(i)
L(a,b) < T2, (a,b) < T2(a,b) < Tn(a,b).
(i) If
1 b aVb
o= {1 6™ el \| Fualarh) — L(a b)J !

then T24(a,b) < Fy/3(a,b).
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Proof. Because ¢(v) = Hy(a,b) is strictly convex, reducing endpoint weights decreases the

trapezoidal overestimate, proving
T2(a,b) < Tp(a,b).

The strict monotonicity follows from the decreasing error ~ 1/n?. For the bound T;L‘(‘)i < Fyy3,
we repeat the proof of Theorem 2.3 with the smaller adaptive constant, yielding the stated

formula. 0

Theorem 2.6 (Adaptive quadrature mean). Let a,b > 0, a # b, and define

n—1

1
n 7b = - iHll‘ ,b,
Qnlart) = D aitlua.)

where

i+ B; 1 ) 1 i
= = a=t14 2 m(14+ L),
Vi n P 2+i/n’ Gi=g\ 1t n2 ) + n

Then:
(i)
L(a,b) < Qni1(a,b) < Qn(a,b) < T2 (a,b),

aVb
Fi3(a,b) — L(a,b) |’

Qn() (CL, b) < Fl/g(a, b)

(ii) for the integer

a

then

2.4. Higher-order and hybrid quadrature means. We now briefly summarize several
higher-order quadrature constructions. For each case, we define means as a weighted sum of
H,,(a,b), with appropriately chosen nodes v; and weights w;, and obtain analogous inequalities
bounding L(a,b) and Fy/3(a,b).

Let a,b > 0 with a # b. For each n € N define:

Quadratic means.
1 1 . (in
n b) = — ZH 7b7 ’L:l 1 — si - ’
Saah) = S Hula, (14 (7))

i+ 0; 1

Cubic means.
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Hybrid Gaussian—adaptive means.

n—1
1 1
Gn(a,b) = - E ki Hr,(a,b), K; = ;(1 + n5612/n2> ,
=0

= b1 (BETY)

The weights are positive for all sufficiently large n, and the nodes u;,&;, 7 € (0,1) by con-
struction. These choices guarantee second-, third-, and fourth-order corrections to the baseline

adaptive quadrature.

Theorem 2.7 (Higher-order quadrature means). Let M, denote one of the means Sy, Wy, or
Gy, defined above. Then for all a,b > 0 with a # b, the following hold:

(i) Monotonicity. For alln € N,
Mp+1(a,b) < My(a,b).
(ii) Chains of inequalities. For every n € N,
L(a,b) < Gn(a,b) < Wy(a,b) < Sp(a,b) < Qula,b) < T2(a,b),

where @, is the refined adaptive quadrature mean and Tﬁd is the adaptive trapezoidal
approximation.

(iii) Upper bound by the Pdlya interpolating mean. There exists an integer ng (de-
pending on a,b) such that

Mo (a,b) < Fyjz(a,b).
(iv) Asymptotic error order. There exist constants Cs,Cy,C5 > 0 such that
1Sy (a,b) — L(a,b)| = Csn™3 4 o(n™3), [Wh(a,b) — L(a,b)| = Cyn~ + o(n™),
|G n(a,b) — L(a,b)| = C5n™° + o(n™).

Proof. Since v — H,(a,b) is strictly convex on [0, 1], any positive-weight quadrature formula

that samples interior points produces an overestimate of the integral

1
L(a,b):/o H,(a,b)dv.

The error for each scheme is negative and has order O(n~%) for k = 3,4,5 in the quadratic,
cubic, and hybrid cases, respectively. Thus:
(i) The magnitude of the negative error decreases with n, giving

Myy1(a,b) < Mp(a,b).
(ii) The ordering of the error constants gives
|G — LI < Wy, = L] < |80 — L| < |Qn — L] < |T3 = L]

which yields the stated chain of inequalities because all errors are of the same sign.

(iii) For each scheme, choose ng such that
1
|Mn0(a7 b) - L(av b)| < §(F1/3(a7 b) - L(av b))a
which is possible because M,, — L as n — oco. Then

Mno((l,b) < L+ %(Fl/g — L) < F1/3'
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(iv) The stated asymptotic orders follow from the standard quadrature error expansions for
second-, third-, and fourth-order corrections to the trapezoidal rule (see, e.g., [1]). [l

3. Operator Versions of the Inequalities

*

A (C*-algebra A is a complex Banach algebra equipped with an involution * satisfying the
C*-identity | X*X|| = || X||?. Strictly positive elements play a central role: an element T € A
is strictly positive if it is positive and its spectrum satisfies o(T") C (0,00). For strictly positive

T,S € A, the operator means
TV,S = (1—v)T +vS,  T#,S =TT 257 1/2)v11/2,

are well-defined via functional calculus.
In this section, we extend the refined scalar inequalities from Section 2 to the operator set-
ting, including non-unital and non-commutative C*-algebras, spectral perturbations, and multi-

operator generalizations.

3.1. Families of Convex Integrands. We first extend Proposition 2.1 to families of convex
functions depending on a parameter.

Proposition 3.1. Let K C R be compact and suppose ® : K X [ag,by] — R satisfies: for each
x € K, the map t — ®(x,t) is twice continuously differentiable, strictly convex on [ag, by, and
0?®/0t? is continuous on K X [ag,bg]. Then for allz € K and n € N,

bo
/ Oz, t) dt < Toir (B(,-)) < To(®(z, ).

ao

Moreover, for any continuous € : K — (0,00) there exists

iy J a0 1o
n = {1 + \/ 12 a:eKI,Igg[}éo,bo] e(x) ot? (2,?)

such that for all x € K,

bo
Tno(q)(x,-))</ B, t) dt + e (x).

ao
Proof. For each fixed x € K, the function ¢t — ®(x,t) satisfies the hypotheses of Proposition 2.1.

Uniform continuity of 9?®/9t? on the compact set K X [ag, by] implies uniform bounds on the

trapezoidal error, giving the desired ng valid simultaneously for all x € K. O

3.2. Non-unital C*-algebras. Let A be a possibly non-unital C*-algebra. If T,S € A are
strictly positive, then 771S is invertible in the multiplier algebra. We assume throughout
that o(T-1S) and o((T + R)~!(S + R)) are bounded away from 1, ensuring uniform spectral
separation.

Lemma 3.2. Let T, S € A be strictly positive and assume o(T~1S) is bounded away from 1.
For the adaptive quadrature weights wy, ..., w,_1, define

n—1

1
My (T, 8) =~ > wi (T#ipS).
=0

Then
L(T,S) S MTL<T7‘S) S Tsd(T7S)>

where L(T,S) = fol T#,S dv.
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Proof. The map v +— T#,S is operator convex for strictly positive T, S. Thus M, (T, S) is an
operator convex combination of T'#,.S and must lie above the integral L(T,S). The upper bound
follows from the fact that replacing the adaptive weights by the trapezoidal weights increases the
contribution of the endpoint values, which increases the quadrature of a convex function. O

Theorem 3.3. Let T, S € A be strictly positive with o(T~1S) bounded away from 1. Then there
exists ng € N such that

L(T,S) <Mn(T,S) <F1/3(T,S), vn > ng.

Proof. Lemma 3.2 gives M,(T,S) < T2Y(T,S). The scalar proof of Theorem 2.5, applied via
functional calculus to o(T~1S), provides ng such that T24(T, S) < F} /3(T, S). Monotonicity of
M, (T, S) in n yields the claim. O

3.3. Non-commutative operator means. When T and S do not commute, it is natural to

consider the symmetric mean

T4,S + S4,T
L(T,8) = 17 ‘;# .

Applying the adaptive quadrature from Theorem 2.6 yields the non-commutative mean

n—1
1
Ny (T, 8) =~ > ai f,(T, S).
=0

Lemma 3.4. Let T, S € A be strictly positive, non-commuting, and assume o(T~1S) is bounded

away from 1. Then
L(T,S) < Nup(T,S) < Qun(T,9),
where @, denotes the adaptive quadrature mean from Theorem 2.6.

Proof. The function v +— f,(T,S) is operator convex, being the average of two operator-convex
functions. The bounds follow from the same quadrature comparison as in Lemma 3.2. O

Theorem 3.5. Under the hypotheses of Lemma 3.4, there exists ng € N such that
L(T,S) < Nu(T,S) < Fy3(T, S), Vn > ng.

Proof. The proof is identical to that of Theorem 3.3, using Lemma 3.4 and the scalar estimate
from Theorem 2.6. O

3.4. Perturbation and multi-operator versions. Let R € A be strictly positive. For
strictly positive T, S, R define the perturbed quadrature mean

n—1

Po(T, S, R) = % S (T + R)# (S + R)).
=0

Lemma 3.6. Assume o((T'+ R)™'(S + R)) is bounded away from 1. Then
L(T+R,S+R) < P,(T,S,R) < S,(T+R,S+R),
where Sy, 1s the quadratic quadrature mean.
Theorem 3.7. Under the hypotheses of Lemma 3.6, there exists ng such that
L(T+R,S+ R) < P(T,S,R) < F3(T + R, S + R) Vn > ng.

Proof. Combine Lemma 3.6 with the scalar proof of Theorem 2.7 applied to J((T+ R)7Y(S —I—R))

via functional calculus. O
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Multi-operator extension. Let 17, . .., T, be strictly positive elements of A, and assume U(T[1Tj)
is bounded away from 1 for all i # j. Define

m n—1

1
% sz T itFe g+1)

7=1 =0
with Ty,41 = T1 and 7; the cubic quadrature weights. Let

1 m
ZL Tjt1) Fizm(T) = EZFM?’(TJaTjH)'
=1

Lemma 3.8. Then .
1
Lp(T) < R EZ

where W, is the cubic quadrature mean.
Theorem 3.9. Under these assumptions, there exists ng € N such that
L (T) < Ru(T) < Fyy3m(T), Vn > ng.
4. Conclusion

We developed refined interpolations of the Heinz and Pélya inequalities by applying quadra-
ture methods to the strictly convex Heinz integrand. Several adaptive and higher-order quad-
rature schemes were introduced, yielding monotone sequences of means that converge to the
logarithmic mean and form sharp bounds between the logarithmic mean and the Heinz—Heron
interpolating mean £ 3.

All scalar results were extended to operator settings in (possibly non-unital and non-commutative)
C*-algebras using functional calculus and operator convexity, including perturbation and multi-
operator versions. The proposed framework provides a unified and flexible tool for deriving
refined scalar and operator inequalities.
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