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We refine the classical Heinz and Pólya in-
equalities by establishing sharper bounds
and developing a unified interpolation
framework that applies to real num-
bers, matrices, and strictly positive ele-
ments of both unital and non-unital C∗-
algebras. Motivated by numerical inac-
curacies in earlier quadrature approxima-
tions, we introduce several new quadrature
schemes—adaptive, higher-order, and hy-
brid Gaussian–adaptive—and demonstrate
their effectiveness in estimating the integral
representation of the logarithmic mean.
These refinements yield improved inequal-
ities lying strictly between the logarith-
mic mean and the Heinz–Heron interpo-
lating mean F1/3 . We further generalize
these results to operator settings, including
non-commutative cases, spectral perturba-
tions, and multi-operator frameworks, and
provide examples illustrating the sharpness
of the new bounds. The methods devel-
oped here enhance both the theoretical un-
derstanding and numerical precision of in-
equalities central to operator theory and
matrix analysis.
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Interpolating Heinz and Pólya Inequalities

1. Preliminaries

The Heinz and Pólya inequalities constitute fundamental tools in matrix and operator analysis,
connecting the arithmetic, geometric, logarithmic, and interpolating means. Their origins trace
back to the classical work of Hardy, Littlewood, and Pólya [3], and they continue to influence
modern developments in operator inequalities, numerical integration, and functional calculus
[2, 6, 9].

Recent advances include operator-theoretic extensions of the Heinz and Heron means [7] and
precision improvements of integral formulas for the logarithmic mean [8]. In particular, numer-
ical approaches based on trapezoidal-type quadrature exhibit instability when the integrand is
strictly convex, such as ν 7→ Hν(a, b), motivating the development of more robust and accurate
approximation schemes.

The main purpose of this paper is threefold:
(1) Refined scalar inequalities. We introduce several new quadrature approximations—

adaptive, higher-order, and hybrid Gaussian–adaptive—which produce sharper estimates
of the logarithmic mean

L(a, b) =

∫ 1

0
Hν(a, b) dν.

These yield families of means lying strictly between L(a, b) and the Heinz–Heron inter-
polating mean F1/3(a, b).

(2) Operator generalizations. For strictly positive operators T, S in a (possibly non-
unital) C∗-algebra, we extend the scalar results and prove

L(T, S) < Mn(T, S) < F1/3(T, S),

where Mn denotes various operator-valued quadrature means. The analysis covers non-
commutative settings, spectral comparison conditions, and perturbations of the form
T +R, S +R.

(3) Multi-operator versions. For an m-tuple of strictly positive operators, we construct
multi-variable quadrature means and prove inequalities between the corresponding multi-
operator logarithmic and Heinz–Heron means.

Before stating our main results, we briefly review the basic means used in this work. For
a, b > 0 and 0 ≤ ν ≤ 1, the weighted arithmetic and geometric means are

a∇νb = (1− ν)a+ νb, a#νb = a1−νbν .

The Heinz mean, Heron mean, and logarithmic mean are respectively defined by

Hν(a, b) =
a#νb+ a#1−νb

2
, Fν(a, b) = (1− ν)(a#b) + ν(a∇b),

L(a, b) =

∫ 1

0
Hν(a, b) dν.

A classical inequality of Pólya asserts that if a ̸= b then

L(a, b) < F1/3(a, b).

The refinements introduced in this paper sharpen the above inequality, provide new quadrature-
based approximations, and generalize all such results to broad operator-theoretic settings.
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2. Refinements of Heinz and Pólya Inequalities

In this section we develop refined quadrature approximations for integrals of strictly convex
functions and apply them to the Heinz mean

Hν(a, b) =
a#νb+ a#1−νb

2
, a, b > 0, a ̸= b.

These refinements yield mean values situated strictly between the logarithmic mean

L(a, b) =

∫ 1

0
Hν(a, b) dν

and the Heinz–Heron interpolating mean F1/3(a, b).

2.1. Trapezoidal approximation for convex integrands. Let φ : [a0, b0] → R be twice
continuously differentiable and strictly convex, i.e. φ′′(t) > 0 on [a0, b0]. Its trapezoidal approx-
imation with n subintervals is

Tn(φ) =
b0 − a0
2n

(
φ(a0) + φ(b0) + 2

n−1∑
i=1

φ

(
a0 + i

b0 − a0
n

))
.

Proposition 2.1. If φ is strictly convex on [a0, b0], then:

(1) For all n ∈ N,

(2.1)
∫ b0

a0

φ(t) dt < Tn+1(φ) < Tn(φ).

(2) For every ε > 0 there exists

n0 =

⌊
1 +

√
(b0 − a0)3

12ε
max

t∈[a0,b0]
φ′′(t)

⌋
such that

Tn0(φ) <

∫ b0

a0

φ(t) dt+ ε.

Proof. The classical error formula for the trapezoidal rule gives∫ b0

a0

φ(t) dt− Tn(φ) = −(b0 − a0)
3

12n2
φ′′(cn), cn ∈ (a0, b0).

Since φ′′(cn) > 0, the difference is negative. Hence:∫
φ < Tn(φ), Tn+1(φ)− Tn(φ) =

(b0 − a0)
3

12

(
φ′′(cn)

(n+ 1)2
− φ′′(cn−1)

n2

)
< 0.

Thus the chain (2.1) holds.
For (2), the absolute error bound∣∣∣∣Tn(φ)−

∫
φ

∣∣∣∣ ≤ (b0 − a0)
3

12n2
maxφ′′

implies
(b0 − a0)

3

12n2
maxφ′′ < ε,

and solving for n yields the claimed bound. □
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Example 2.2. Let φ(t) = t2 on [0, 1]. Then:∫ 1

0
t2 dt =

1

3
, T2(φ) =

3

8
, T3(φ) =

7

18
.

Hence
1

3
< T3(φ) < T2(φ),

in agreement with Proposition 2.1.

2.2. Application to the Heinz mean. Define the trapezoidal Heinz approximation

Tn(a, b) =
1

2n

(
√
ab+

a+ b

2
+ 2

n−1∑
i=1

Hi/n(a, b)

)
.

Theorem 2.3. Let a, b > 0, a ̸= b. Then:
(1) For all n ∈ N,

L(a, b) < Tn+1(a, b) < Tn(a, b).

(2) If

n0 =

⌊
1 +

√
3

12

a∇b

F1/3(a, b)− L(a, b)

∣∣∣∣ln b

a

∣∣∣∣
⌋
,

then Tn0(a, b) < F1/3(a, b).

Proof. Let φ(ν) = Hν(a, b) for ν ∈ [0, 1]. Then

φ′′(ν) =
a+ b

2
ln2(a/b) > 0,

so φ is strictly convex. Applying Proposition 2.1 on [0, 1] proves (1).
For (2), set

ε =
1

2

(
F1/3(a, b)− L(a, b)

)
.

Using Proposition 2.1(2) with φ′′ constant gives the stated formula for n0. □

Example 2.4. For a = 1, b = 2,

L(1, 2) ≈ 1.4427, F1/3(1, 2) ≈ 1.4472, T2(1, 2) ≈ 1.4571.

Thus
L(1, 2) < T2(1, 2) < F1/3(1, 2).

2.3. Adaptive refinements. Define the adaptive quadrature mean

T ad
n (a, b) =

1

n

n−1∑
i=0

wiHi/n(a, b),

where

w0 = wn−1 =
1
4 , wi =

1
2 (1 ≤ i ≤ n− 2),

n−1∑
i=0

wi = n/2.

Theorem 2.5. Let a, b > 0, a ̸= b. Then:
(i)

L(a, b) < T ad
n+1(a, b) < T ad

n (a, b) < Tn(a, b).

(ii) If

n0 =

⌊
1 +

1

6

∣∣∣∣ln b

a

∣∣∣∣
√

a∇b

F1/3(a, b)− L(a, b)

⌋
,

then T ad
n0

(a, b) < F1/3(a, b).
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Proof. Because φ(ν) = Hν(a, b) is strictly convex, reducing endpoint weights decreases the
trapezoidal overestimate, proving

T ad
n (a, b) < Tn(a, b).

The strict monotonicity follows from the decreasing error ∼ 1/n2. For the bound T ad
n0

< F1/3,
we repeat the proof of Theorem 2.3 with the smaller adaptive constant, yielding the stated
formula. □

Theorem 2.6 (Adaptive quadrature mean). Let a, b > 0, a ̸= b, and define

Qn(a, b) =
1

n

n−1∑
i=0

αiHνi(a, b),

where

νi =
i+ βi
n

, βi =
1

2 + i/n
, αi =

1
2

(
1 +

1

n2

)
ln

(
1 +

i

n

)
.

Then:

(i)

L(a, b) < Qn+1(a, b) < Qn(a, b) < T ad
n (a, b),

(ii) for the integer

n0 =

⌊
1 +

1

8

∣∣∣∣ln b

a

∣∣∣∣
√

a∇b

F1/3(a, b)− L(a, b)

⌋
,

then

Qn0(a, b) < F1/3(a, b).

2.4. Higher-order and hybrid quadrature means. We now briefly summarize several
higher-order quadrature constructions. For each case, we define means as a weighted sum of
Hνi(a, b), with appropriately chosen nodes νi and weights ωi, and obtain analogous inequalities
bounding L(a, b) and F1/3(a, b).

Let a, b > 0 with a ̸= b. For each n ∈ N define:
Quadratic means.

Sn(a, b) =
1

n

n−1∑
i=0

γiHµi(a, b), γi =
1
2

(
1 +

1

n3
sin

(
iπ

n

))
,

µi =
i+ δi
n

, δi =
1

3 + (i/n)2
.

Cubic means.

Wn(a, b) =
1

n

n−1∑
i=0

ηiHξi(a, b), ηi =
1
2

(
1 +

1

n4
cos

(
2iπ

n

))
,

ξi =
i+ ζi
n

, ζi =
1

4 + (i/n)3
.
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Hybrid Gaussian–adaptive means.

Gn(a, b) =
1

n

n−1∑
i=0

κiHτi(a, b), κi =
1
2

(
1 +

1

n5
e−i2/n2

)
,

τi =
1

2

(
1 + cos

(
(2i+ 1)π

n

))
+

1

5 + (i/n)4
.

The weights are positive for all sufficiently large n, and the nodes µi, ξi, τi ∈ (0, 1) by con-
struction. These choices guarantee second-, third-, and fourth-order corrections to the baseline
adaptive quadrature.

Theorem 2.7 (Higher-order quadrature means). Let Mn denote one of the means Sn,Wn, or
Gn defined above. Then for all a, b > 0 with a ̸= b, the following hold:

(i) Monotonicity. For all n ∈ N,

Mn+1(a, b) < Mn(a, b).

(ii) Chains of inequalities. For every n ∈ N,

L(a, b) < Gn(a, b) < Wn(a, b) < Sn(a, b) < Qn(a, b) < T ad
n (a, b),

where Qn is the refined adaptive quadrature mean and T ad
n is the adaptive trapezoidal

approximation.
(iii) Upper bound by the Pólya interpolating mean. There exists an integer n0 (de-

pending on a, b) such that

Mn0(a, b) ≤ F1/3(a, b).

(iv) Asymptotic error order. There exist constants C3, C4, C5 > 0 such that

|Sn(a, b)− L(a, b)| = C3 n
−3 + o(n−3), |Wn(a, b)− L(a, b)| = C4 n

−4 + o(n−4),

|Gn(a, b)− L(a, b)| = C5 n
−5 + o(n−5).

Proof. Since ν 7→ Hν(a, b) is strictly convex on [0, 1], any positive-weight quadrature formula
that samples interior points produces an overestimate of the integral

L(a, b) =

∫ 1

0
Hν(a, b) dν.

The error for each scheme is negative and has order O(n−k) for k = 3, 4, 5 in the quadratic,
cubic, and hybrid cases, respectively. Thus:

(i) The magnitude of the negative error decreases with n, giving

Mn+1(a, b) < Mn(a, b).

(ii) The ordering of the error constants gives

|Gn − L| < |Wn − L| < |Sn − L| < |Qn − L| < |T ad
n − L|,

which yields the stated chain of inequalities because all errors are of the same sign.
(iii) For each scheme, choose n0 such that

|Mn0(a, b)− L(a, b)| < 1

2

(
F1/3(a, b)− L(a, b)

)
,

which is possible because Mn → L as n → ∞. Then

Mn0(a, b) < L+ 1
2(F1/3 − L) < F1/3.
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(iv) The stated asymptotic orders follow from the standard quadrature error expansions for
second-, third-, and fourth-order corrections to the trapezoidal rule (see, e.g., [1]). □

3. Operator Versions of the Inequalities

A C∗-algebra A is a complex Banach algebra equipped with an involution ∗ satisfying the
C∗-identity ∥X∗X∥ = ∥X∥2. Strictly positive elements play a central role: an element T ∈ A
is strictly positive if it is positive and its spectrum satisfies σ(T ) ⊂ (0,∞). For strictly positive
T, S ∈ A, the operator means

T∇νS = (1− ν)T + νS, T#νS = T 1/2(T−1/2ST−1/2)νT 1/2,

are well-defined via functional calculus.
In this section, we extend the refined scalar inequalities from Section 2 to the operator set-

ting, including non-unital and non-commutative C∗-algebras, spectral perturbations, and multi-
operator generalizations.

3.1. Families of Convex Integrands. We first extend Proposition 2.1 to families of convex
functions depending on a parameter.

Proposition 3.1. Let K ⊂ R be compact and suppose Φ : K × [a0, b0] → R satisfies: for each
x ∈ K, the map t 7→ Φ(x, t) is twice continuously differentiable, strictly convex on [a0, b0], and
∂2Φ/∂t2 is continuous on K × [a0, b0]. Then for all x ∈ K and n ∈ N,∫ b0

a0

Φ(x, t) dt < Tn+1(Φ(x, ·)) < Tn(Φ(x, ·)).

Moreover, for any continuous ε : K → (0,∞) there exists

n0 =

⌊
1 +

√
(b0 − a0)3

12
max

x∈K, t∈[a0,b0]

1

ε(x)

∂2Φ

∂t2
(x, t)

⌋
such that for all x ∈ K,

Tn0(Φ(x, ·)) <
∫ b0

a0

Φ(x, t) dt+ ε(x).

Proof. For each fixed x ∈ K, the function t 7→ Φ(x, t) satisfies the hypotheses of Proposition 2.1.
Uniform continuity of ∂2Φ/∂t2 on the compact set K × [a0, b0] implies uniform bounds on the
trapezoidal error, giving the desired n0 valid simultaneously for all x ∈ K. □

3.2. Non-unital C∗-algebras. Let A be a possibly non-unital C∗-algebra. If T, S ∈ A are
strictly positive, then T−1S is invertible in the multiplier algebra. We assume throughout
that σ(T−1S) and σ((T + R)−1(S + R)) are bounded away from 1, ensuring uniform spectral
separation.

Lemma 3.2. Let T, S ∈ A be strictly positive and assume σ(T−1S) is bounded away from 1.
For the adaptive quadrature weights w0, . . . , wn−1, define

Mn(T, S) =
1

n

n−1∑
i=0

wi (T#i/nS).

Then
L(T, S) ≤ Mn(T, S) ≤ T ad

n (T, S),

where L(T, S) =
∫ 1
0 T#νS dν.
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Proof. The map ν 7→ T#νS is operator convex for strictly positive T, S. Thus Mn(T, S) is an
operator convex combination of T#νS and must lie above the integral L(T, S). The upper bound
follows from the fact that replacing the adaptive weights by the trapezoidal weights increases the
contribution of the endpoint values, which increases the quadrature of a convex function. □

Theorem 3.3. Let T, S ∈ A be strictly positive with σ(T−1S) bounded away from 1. Then there
exists n0 ∈ N such that

L(T, S) < Mn(T, S) < F1/3(T, S), ∀n ≥ n0.

Proof. Lemma 3.2 gives Mn(T, S) ≤ T ad
n (T, S). The scalar proof of Theorem 2.5, applied via

functional calculus to σ(T−1S), provides n0 such that T ad
n0

(T, S) < F1/3(T, S). Monotonicity of
Mn(T, S) in n yields the claim. □

3.3. Non-commutative operator means. When T and S do not commute, it is natural to
consider the symmetric mean

fν(T, S) =
T#νS + S#νT

2
.

Applying the adaptive quadrature from Theorem 2.6 yields the non-commutative mean

Nn(T, S) =
1

n

n−1∑
i=0

αi fνi(T, S).

Lemma 3.4. Let T, S ∈ A be strictly positive, non-commuting, and assume σ(T−1S) is bounded
away from 1. Then

L(T, S) ≤ Nn(T, S) ≤ Qn(T, S),

where Qn denotes the adaptive quadrature mean from Theorem 2.6.

Proof. The function ν 7→ fν(T, S) is operator convex, being the average of two operator-convex
functions. The bounds follow from the same quadrature comparison as in Lemma 3.2. □

Theorem 3.5. Under the hypotheses of Lemma 3.4, there exists n0 ∈ N such that

L(T, S) < Nn(T, S) < F1/3(T, S), ∀n ≥ n0.

Proof. The proof is identical to that of Theorem 3.3, using Lemma 3.4 and the scalar estimate
from Theorem 2.6. □

3.4. Perturbation and multi-operator versions. Let R ∈ A be strictly positive. For
strictly positive T, S,R define the perturbed quadrature mean

Pn(T, S,R) =
1

n

n−1∑
i=0

γi
(
(T +R)#µi(S +R)

)
.

Lemma 3.6. Assume σ
(
(T +R)−1(S +R)

)
is bounded away from 1. Then

L(T +R,S +R) ≤ Pn(T, S,R) ≤ Sn(T +R,S +R),

where Sn is the quadratic quadrature mean.

Theorem 3.7. Under the hypotheses of Lemma 3.6, there exists n0 such that

L(T +R,S +R) < Pn(T, S,R) < F1/3(T +R,S +R) ∀n ≥ n0.

Proof. Combine Lemma 3.6 with the scalar proof of Theorem 2.7 applied to σ
(
(T+R)−1(S+R)

)
via functional calculus. □

63



Measure Algebras and Applications, Year. 2025, Vol. 3, No. 1, pp. 55-65

Multi-operator extension. Let T1, . . . , Tm be strictly positive elements of A, and assume σ(T−1
i Tj)

is bounded away from 1 for all i ̸= j. Define

Rn(T ) =
1

mn

m∑
j=1

n−1∑
i=0

ηi
(
Tj#ξiTj+1

)
,

with Tm+1 = T1 and ηi the cubic quadrature weights. Let

Lm(T ) =
1

m

m∑
j=1

L(Tj , Tj+1), F1/3,m(T ) =
1

m

m∑
j=1

F1/3(Tj , Tj+1).

Lemma 3.8. Then
Lm(T ) ≤ Rn(T ) ≤ 1

m

m∑
j=1

Wn(Tj , Tj+1),

where Wn is the cubic quadrature mean.

Theorem 3.9. Under these assumptions, there exists n0 ∈ N such that

Lm(T ) < Rn(T ) < F1/3,m(T ), ∀n ≥ n0.

4. Conclusion

We developed refined interpolations of the Heinz and Pólya inequalities by applying quadra-
ture methods to the strictly convex Heinz integrand. Several adaptive and higher-order quad-
rature schemes were introduced, yielding monotone sequences of means that converge to the
logarithmic mean and form sharp bounds between the logarithmic mean and the Heinz–Heron
interpolating mean F1/3.

All scalar results were extended to operator settings in (possibly non-unital and non-commutative)
C∗-algebras using functional calculus and operator convexity, including perturbation and multi-
operator versions. The proposed framework provides a unified and flexible tool for deriving
refined scalar and operator inequalities.
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