Quantum Topological Dynamical Systems: Foundations

Document Type : Original Article

Authors

1 Department of Mathematics, Semnan University, Semnan, Iran

2 Department of Mathematics, Semnan University, Semnan, Iran, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran and School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran

Abstract

This paper introduces a framework for Quantum Topological Dynamical Systems (QTDS), reformulating classical topological dynamics in a quantum-inspired probabilistic context. The fundamental objects are maps or flows on spaces of probability densities over a manifold, rather than on the manifold itself. We provide a general construction for such dynamics from classical systems and analyze their properties. The central contribution is the introduction and characterization of microscopic fixed and periodic points and invariant sets, with necessary and sufficient conditions linking these probabilistic concepts to classical deterministic counterparts. This work establishes a dictionary for translating classical topological dynamics into the language of evolving probability densities.

Keywords

Main Subjects


[1] Arnold, L. (1998). Random Dynamical Systems. Springer. DOI: https://doi.org/10.1007/978-3-662-12878-7.
[2] Arnold, V.I. (2013). Mathematical methods of classical mechanics (2nd ed.).
Springer. DOI: https://doi.org/10.1007/978-1-4757-2063-1.
[3] Baladi, V. (2000). Positive transfer operators and decay of correlations.
World Scientific. DOI: https://doi.org/10.1142/3657.
[4] Busch, P., Lahti, P.,
& Mittelstaedt, P. (1996). The quantum theory of measurement (2nded.). Springer. ISBN 3540613552.
[5] Connes, A. (1994). Noncommutative geometry.
Academic Press. ISBN: 978-0-12-185860-5.
[6] Evans, L.C. (2022). Partial differential equations (2nd ed.).
American Mathematical Society.
[7] Griffiths, D.J.,
& Schroeter, D.F. (2018). Introduction to quantum mechanics (3rd ed.).
Cambridge University Press. DOI: https://doi.org/10.1017/9781316995433.
[8] Katok, A.,
& Hasselblatt, B. (1995). Introduction to the modern theory of dynamical systems.
Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511809187.
[9] Koopman, B.O. (1931). Hamiltonian systems and transformation in Hilbert space.
Proceedings of the National Academy of Sciences, 17(5), 315–318. DOI: https://doi.org/10.1073/pnas.17.5.315.
[10] Landau, L.D.,
& Lifshitz, E.M. (2013). Quantum mechanics: non-relativistic theory (3rded.). Elsevier.
[11] Lasota, A.,
& Mackey, M.C. (2013). Chaos, fractals, and noise: stochastic aspects of dynamics (2nd ed.). Springer. ISBN-10. 0387940499.
[12] Madelung, E. (1927). Quantentheorie in hydrodynamischer Form.
Zeitschrift für Physik, 40(3), 322–326. DOI: https://doi.org/10.1007/BF01400372.
[13] Ruelle, D. (2010). Thermodynamic formalism: the mathematical structure of equilibrium statistical mechanics (2nd ed.).
Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511617546.
[14] Thirring, W. (2002). Quantum mathematical physics: atoms, molecules and large systems (2nd ed.).
Springer. DOI: https://doi.org/10.1007/978-3-662-05008-8.
[15] von Neumann, J. (1996). Mathematische Grundlagen der Quantenmechanik.
Springer. DOI: https://doi.org/10.1007/978-3-642-61409-5.
[16] Walters, P. (2000). An introduction to ergodic theory (2nd ed.).
Springer. ISBN 0387951520.