[1] Arnold, L. (1998). Random Dynamical Systems. Springer. DOI: https://doi.org/10.1007/978-3-662-12878-7.
[2] Arnold, V.I. (2013). Mathematical methods of classical mechanics (2nd ed.). Springer. DOI: https://doi.org/10.1007/978-1-4757-2063-1.
[3] Baladi, V. (2000). Positive transfer operators and decay of correlations. World Scientific. DOI: https://doi.org/10.1142/3657.
[4] Busch, P., Lahti, P., & Mittelstaedt, P. (1996). The quantum theory of measurement (2nded.). Springer. ISBN 3540613552.
[5] Connes, A. (1994). Noncommutative geometry. Academic Press. ISBN: 978-0-12-185860-5.
[6] Evans, L.C. (2022). Partial differential equations (2nd ed.). American Mathematical Society.
[7] Griffiths, D.J., & Schroeter, D.F. (2018). Introduction to quantum mechanics (3rd ed.).
Cambridge University Press. DOI: https://doi.org/10.1017/9781316995433.
[8] Katok, A., & Hasselblatt, B. (1995). Introduction to the modern theory of dynamical systems.
Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511809187.
[9] Koopman, B.O. (1931). Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences, 17(5), 315–318. DOI: https://doi.org/10.1073/pnas.17.5.315.
[10] Landau, L.D., & Lifshitz, E.M. (2013). Quantum mechanics: non-relativistic theory (3rded.). Elsevier.
[11] Lasota, A., & Mackey, M.C. (2013). Chaos, fractals, and noise: stochastic aspects of dynamics (2nd ed.). Springer. ISBN-10. 0387940499.
[12] Madelung, E. (1927). Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik, 40(3), 322–326. DOI: https://doi.org/10.1007/BF01400372.
[13] Ruelle, D. (2010). Thermodynamic formalism: the mathematical structure of equilibrium statistical mechanics (2nd ed.). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511617546.
[14] Thirring, W. (2002). Quantum mathematical physics: atoms, molecules and large systems (2nd ed.). Springer. DOI: https://doi.org/10.1007/978-3-662-05008-8.
[15] von Neumann, J. (1996). Mathematische Grundlagen der Quantenmechanik. Springer. DOI: https://doi.org/10.1007/978-3-642-61409-5.
[16] Walters, P. (2000). An introduction to ergodic theory (2nd ed.). Springer. ISBN 0387951520.