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1. Introduction

The theory of classical topological dynamical systems (TDS) is rooted in the deterministic
framework of classical mechanics. One considers a phase space M, typically a manifold, and a
homeomorphism f : M — M (or a flow ¢;) describing the time evolution. The dynamics of a
definite initial state o € M is given by the sequence {f"™(zo) }nez-

In stark contrast, quantum mechanics fundamentally replaces the notion of a definite initial
state with a probabilistic description. The state of a system is not a point xy but a wave function
1, and the observable reality is encoded in a probability density p = |¢|2. This foundational shift
from certainty to probability necessitates a new dynamical framework at the level of densities.
This paper aims to develop the mathematical foundations of such a framework, which we call
Quantum Topological Dynamical Systems (QTDS), by systematically lifting classical dynamics
to the space of probability measures.

1.1. Literature Review and Motivation. The interplay between classical and quantum
dynamics has been a central theme in mathematical physics for decades. The Koopman—von
Neumann approach [9, 15] provides an operator-theoretic formulation of classical mechanics,
while the Perron—Frobenius operator [3, 11] describes the evolution of probability densities un-
der classical dynamical systems. Our work bridges these classical approaches with quantum
mechanical concepts.

In quantum mechanics, the evolution of wave functions follows the Schrodinger equation, and
the corresponding probability densities satisfy the continuity equation [7, 10]. The Madelung
transformation [12] reveals the hydrodynamic formulation of quantum mechanics, where the
continuity equation plays a fundamental role. Our framework extends these ideas to a general
topological setting.

Recent work in operator algebras and non-commutative geometry [5] has explored quantum
dynamical systems from an algebraic perspective. However, our approach differs by maintaining
the classical manifold structure while quantizing the state space from points to probability den-
sities. This perspective is closer in spirit to quantum measurement theory [1] and the statistical
mechanics of quantum systems [14].

The concept of microscopic fixed points introduced in this paper has precursors in the study
of invariant measures and stationary distributions [16], but our definition provides a pointwise
characterization that is novel in the literature. The cocycle conditions we employ are standard in
the theory of random dynamical systems [1] and appear naturally in thermodynamic formalism
[13] and transfer operator theory [3], though our focus is on the topological rather than statistical
properties.

1.2. Main Contributions. In a QTDS, the fundamental object is not a map or a flow on M,
but a map F' or a flow ®; on the space of continuous probability densities D(M ). Our primary
goal is to reinterpret and generalize the core concepts of TDS within this new paradigm.

A central concept in TDS is that of a fixed point: a state xg such that f(z¢) = x¢. The naive
quantum analogue would be a fixed density pg such that F(pg) = po or ®,(pg) = po. However,
this is often too restrictive. We are frequently interested in points in the manifold M itself.
Therefore, we define a point g € M to be a microscopic fixed point if for every initial density
po and for all times ¢, the evolved density F'(pg) or ®4(pg) assigns the same probability to xg as
the initial density did:

F(po)(x0) = po(o)
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or
®4(po)(wo) = po(wo)-
This means the probability of finding the system at x( is constant in time. In this paper, we

will rigorously define QTDS, provide canonical examples, and systematically redefine and prove
analogues of classical results, starting with fixed and periodic points.

1.3. Justification of Terminology and Scope. The term Quantum in our title requires
clarification. We use it in a specific, formal sense to indicate a framework whose axioms are
modeled on foundational aspects of quantum mechanics, rather than to describe a system with
genuine quantum (non-commutative) observables.

Philosophical Stance and Restrictive Focus: It is crucial to emphasize that the primary
goal of this foundational paper is not to develop the most general possible theory of density
evolution. Rather, we intentionally restrict our attention to quantum dynamics of the specific
form given in Equations (2.3) and (2.6)—that is, weighted lifts of a classical dynamics (f, o)
via a cocycle h.

This restriction serves a deliberate purpose: to use the cocycle h (with generator o) as a
controlled "microscope” or probabilistic lens through which to study the classical system. The
classical flow ¢, is not just an example; it is the essential underlying object of our study. The
framework is designed to translate classical topological concepts (fixed points, periodic points)
into probabilistic language while preserving their relationship to the deterministic trajectory
structure.

The question of whether more general density evolutions (e.g., diffusive processes as in the heat
equation) can be accommodated within the definition is mathematically valid. Indeed, Definition
2.2 is broad enough to include them. However, including such examples would dilute the paper’s
core mission: to establish a precise dictionary between classical deterministic properties and
their probabilistic shadows within a tightly coupled formalism. The weighted lift construction
guarantees this coupling.

Thus, while the referee’s suggestion to explore non-lift examples points to an interesting gen-
eralization, it falls outside the self-imposed scope of this foundational work. Our aim is to build
a coherent theory where the classical dynamics remains the reference point, and the "quantum”
aspect enters solely through the probabilistic state representation and the multiplicative cocycle
weight.

Our framework is "quantum” in the following precise ways:

(1) State Space: The fundamental object is a probability density p € D(M), analogous to
the position probability density ||? in quantum mechanics, not a point in phase space.

(2) Dynamical Law: The evolution is defined directly on this space of densities (F' :
D(M) — D(M)), mirroring the Schrodinger picture’s evolution of states.

(3) Key Equation: A primary example and motivation is the continuity equation (2.9),
which is exactly the equation governing probability conservation in the hydrodynamic
(Madelung) formulation of quantum mechanics.

However, our theory is classical in these crucial aspects:

(1) Underlying Space: The configuration space M is a classical manifold.

(2) Observables: There is no introduction of non-commuting operators; observables are
classical functions on M.

(3) Superposition & Interference: The framework deals with classical probability den-

sities, not complex amplitudes, and therefore does not exhibit quantum interference.
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Thus, the present work is more accurately described as a probabilistic topological dynamics
inspired by the quantum mechanical worldview. The terminology "QTDS” serves to emphasize
this conceptual lineage and to distinguish it from classical TDS, which deals with point tra-
jectories. The primary goal is to establish a rigorous mathematical structure that translates
concepts like fixed points, periodic points, invariant sets and (in future work) ergodicity from
the deterministic realm to the probabilistic one. This provides a new lens through which to
analyze classical systems and creates a formal bridge to the probabilistic nature of quantum
theory.

2. Definition and Examples of Quantum Dynamics

Throughout this paper, let M be a finite-dimensional, oriented Riemannian manifold. Let
D(M) denote the space of continuous probability density functions on M, i.e., continuous func-
tions p : M — [0, 00) with [,,p=1.

Topological Structure: We equip D(M) with the topology of uniform convergence on
compact sets (compact-open topology). This choice is natural as it ensures that pointwise
evaluation p — p(z) is continuous for each x € M. All maps F' : D(M) — D(M) and flows
®; considered in this paper are assumed to be continuous with respect to this topology unless
otherwise stated. This continuity assumption is essential for a genuine topological dynamical
systems theory.

Definition 2.1 (Discrete Quantum Dynamics). A discrete quantum dynamics on M is a home-
omorphism F : D(M) — D(M).

Definition 2.2 (Continuous Quantum Dynamics). A continuous quantum dynamics (or quan-
tum flow) on M is a one-parameter family of homeomorphisms {®; : D(M) — D(M)}icr such
that:

(1) &9 = Id,

(2) 50 Py = Dyyy for all s,t € R.

More general spaces (e.g., L' densities) may be considered in future work, but continuity is
natural for pointwise evaluations in our definitions of microscopic fixed points. Note that we
do not assume linearity of F' or ®;. While many classical examples (like the Perron-Frobenius
operator) are linear, our framework also accommodates the nonlinear factor exp(h:(x)) in the
weighted lift construction. The theory is developed at this level of generality.

A primary source of examples comes from lifting a classical dynamics to the space of densities.

Example 2.3 (Induced Quantum Dynamics from a Classical Map). Let f : M — M be a
homeomorphism. Define the discrete quantum dynamics F : D(M) — D(M) by

(2.1) F(p)(z) = p(f~"(2))-
This is a homeomorphism, with its inverse given by F~1(p)(x) = p(f(z)). The sequence F,, = F™
satisfies Fp1m = Fy 0 Fy and Supp(Fn(p)) = f”(supp(p)).

This construction is essentially the Perron-Frobenius operator [11] for the map f. Our frame-
work generalizes this classical operator to include multiplicative cocycles.

A more general construction involves a multiplicative factor.

Example 2.4 (Weighted Quantum Dynamics). Let f : M — M be a homeomorphism and let
{hn : M — R},ez be a sequence of continuous functions satisfying the cocycle condition

(2.2) han(z) = hp(z) + hyn (7" (x))  for all m,n € Z,xz € M.
46



Quantum Topological Dynamical Systems: Foundations
Define the quantum dynamics F,, : D(M) — D(M) by
(2.3) Fa(p)(x) = p(f " () exp(hn(2)).

This defines a quantum dynamics, as the cocycle condition (2.2) ensures the group property
Foim =F,oF,.

Proof. We verify the group property

Fu(Fun(0))(2) = Fu(p)(f () exp(ha ()
= p(f (7 @))) exP (b (f7 () + ()
— p(F (@) explnim(@)  (by (2.2))
= Fom(p) (@).
O

A canonical choice for the cocycle h,, is given by summing a potential function along the orbit.

Example 2.5. Let 0 : M — R be a continuous function. Define

(2.4) 2= S ol
k=0

Proof. Case 1: n,m > 0. We compute

n+m—1
hogm(z) = > o(fF 0™ (2))
k=0
_ n+m—1
Z (fErtm @)+ > o(fF (@),
k=n

In the second sum, let j = kK —n. Then j runs from 0 to m — 1, and

fk_(n+m)(.%') _ fj—m(x) — f]—m(f—n(fn(x)» = f—m+j(f_”($)).

Thus
— i (P @) + S ol ).
Now observe - ”
tle) = 3 o7"a)),
=
(@) = mo o (@),

Therefore, hpim(z) = hn(z) + by (f"(x)) for n,m > 0.
Case 2: General integer n, m. For negative indices, we extend the definition consistently via
the cocycle condition. For n < 0, define

hn(2) = —hn(f"(2)).
This ensures the cocycle property holds for all integers by the group homomorphism property.
One may verify directly for each sign combination that the identity is satisfied.
Since the cocycle condition holds for positive indices and the extension to negative indices is

defined to preserve the condition, the result follows for all m,n € Z. O
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The continuous-time analogues of these examples are as follows.

Example 2.6 (Continuous Quantum Flow). Let {¢; : M — M }er be a flow (a one-parameter
group of homeomorphisms). Let {hy : M — R}ycr be a family of functions satisfying the
continuous cocycle condition:

(2.5) hstt(x) = he(z) + hs(p—t(x)) for all s,t € R,z € M.
Then the map ®, : D(M) — D(M) defined by

(2.6) D4 (p)(x) = p(p—t(2)) exp(he(z))

is a continuous quantum flow. Furthermore, supp(®¢(p)) = ¢i(supp(p)).

Example 2.7. Let 0 : M — R be continuous. The function

¢
(2.7) i) = [ olou-i())ds
0
satisfies the cocycle condition (2.5).

Proof. Let hy(x) = fg o(ps—t(x))ds. For any s,t € R and x € M, we compute

s+t
hsii(x) = /0 0 (Pu—(s+1)(x))du

t
= / o(pr—¢(z))dr (substitute r = u — s)

—S8

-/ " olru(a))dr + / o (rs(a))dr.

—S8
The second term equals hy(z). For the first term, substitute v = —r

[ oter-stanir= [ oto-siteni-an

—S8

— [ otomsstano

— [ le-ulp-rla))de (fow property)
0
= hs(p—t(2)).
Thus hsi¢(x) = he(z) + hs(p—i(x)), verifying the cocycle condition. O

A physically crucial example arises from the continuity equation.

Theorem 2.8. Let V' be a smooth vector field on M with flow p;. Let 0 = =V -V, where V- is
the divergence operator on M with respect to its Riemannian volume form. Define the quantum
flow @, by (2.6) with hy given by (2.7), i.e.,

(2.8) ®i(p)(x) = p(p—i(x)) exp <—/O (V- V)(%—t(ﬂff))d$> :

For a given initial density po, define pi(x) = ®¢(po)(x). Then p; satisfies the continuity equation:

Ipt .

Conversely, if pt is a solution to (2.9) with initial condition py, then py is given by the formula

(2.8).
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Proof. Let J(t,x) = det(dp¢(x)) be the Jacobian determinant of the flow. By Liouville’s formula

[2]:

2 (t) = (V- V(@) T a), J(0,2) =1

Solving this ODE gives:
t.0) = oo ([ 7Vt
The pushforward density (p:).po is given by [8]:
(e1)«po(z) = po(p—i(z))J(—t,z) "

Substituting the formula for J(—t,x):

(p0)-m(o) = ol (- [ T V)(ouleas).

Changing variables s — —s in the integral yields exactly (2.8).
Equivalently, the pushforward density satisfies %(apt)*po = —Ly((vt)«po), where Ly is the
Lie derivative along V. This is the geometric formulation of the continuity equation (2.9).

Since the pushforward density (¢:)«po classically satisfies the continuity equation [6], and our
formula equals this pushforward, p; satisfies (2.9).

Conversely, by uniqueness for the continuity equation [0], any solution must equal the push-
forward density, hence is given by (2.8). O

Remark 2.9. For the quantum flow (2.8) we have:

(a) pi(supp(po)) = supp(pr).-
(b) If po is a probability density ([, po = 1), then ®(po) is also a probability density for all

t.

2.1. Existence, Uniqueness, and Generators. A fundamental question in any dynamical
theory is: given an infinitesimal prescription, does a global flow exist? For classical flows gen-
erated by vector fields, the answer is provided by the theory of ordinary differential equations.
For quantum flows on D(M), we can formulate an analogous theory.

Definition 2.10 (Infinitesimal Generator). Let {®;} be a continuous quantum flow on D(M).
Its infinitesimal generator is the operator L defined on a dense subspace of D(M) by

(I) _
Lp = lim 7t('0) p’
t—0 t

whenever the limit exists in the topology of D(M).

The primary example motivating our work is the continuity equation flow from Theorem 2.8.
In that case, the generator is the first-order differential operator:

Lp=—V-(pV).

More generally, one could consider generators of the form Lp = —V-Vp+op, whereo : M — R
is a continuous function. This corresponds to the weighted continuity equation

Ipt
Py, —
5 +V - -Vp=op,
whose solution is precisely the quantum flow (2.6) with h; given by (2.7).
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Theorem 2.11 (Local Existence and Uniqueness for Lipschitz Generators). Let £ : D(M) —
D(M) be a (possibly nonlinear) operator that is Lipschitz continuous on bounded subsets of
D(M). Then for any initial po € D(M), there exists a unique local quantum flow ®; defined for
t in some interval (—e, €) such that %fbt(po) = L(P¢(po))-

Sketch. The proof follows standard arguments from the theory of ordinary differential equations
on Banach spaces, applied to the space of continuous functions on M. The Lipschitz condition
ensures local existence and uniqueness via the Picard-Lindel6f theorem in this function space
setting. [l

This theorem provides a general mechanism for constructing quantum flows from generators.
However, the specific weighted lift construction (2.6) remains our primary focus, as it maintains

a direct correspondence with an underlying classical flow ;.

2.2. Relation to Koopman and Transfer Operators. Our framework has natural connec-

tions to two classical operator-theoretic approaches to dynamics:

(1) Koopman Operator: For a classical map f : M — M, the Koopman operator U :
L (M) — L*°(M) acts on observables by Ug(x) = g(f(x)). It is the dual to the Perron-
Frobenius operator acting on densities. Our weighted quantum dynamics (2.3) can be
viewed as a nonlinear version of the Perron-Frobenius operator, where the multiplicative
factor exp(hy,(x)) introduces state-dependent weighting.

(2) Transfer Operators: In thermodynamic formalism, transfer (Ruelle-Perron-Frobenius)
operators of the form

Log(z)= > e¢"Wy(y)
fly)==
play a central role. Our discrete weighted dynamics F(p)(z) = p(f~*(z)) exp(o(f~1(x)))
is essentially the deterministic version of this construction where f is invertible. The
cocycle condition (2.2) ensures the group property that is automatic for powers of a fixed

transfer operator.

A fundamental question raised by the referee is: Is every "reasonable” quantum dynamics
F of the weighted lift form (2.3)? For dynamics that preserve the support in a deterministic
way—i.e., for which there exists a map f: M — M such that supp(F(p)) = f(supp(p)) for all
p—one can show that F must be of the form F(p)(x) = p(f~!(z))w(x) for some weight function
w. The cocycle condition on w (or its time-dependent analogue) then emerges from requiring
the group property. Thus, within the class of support-preserving dynamics, our formulation is
essentially complete.

However, as noted in Section 1.3, this paper intentionally restricts to this class to maintain a
tight connection with classical dynamics. More general quantum dynamics that allow support
mixing or diffusion (like the heat equation) are mathematically possible within Definition 2.2

but lie outside our current focus.

2.3. Physical Relevance: Madelung Transform and Quantum Mechanics. The con-

tinuity equation (2.9) is fundamental in physics and provides a direct bridge to quantum me-

chanics via the Madelung transform [12]. Consider the Schrodinger equation for a wave function
Yv:MxR—C

oY n?_,

h— = —— U

T 2mv YUY,

where h is Planck’s constant, m is mass, and U is the potential energy.
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Using the polar decomposition ¢ = Rexp(iS/h) with R, S real-valued, we set
p= > = R?
1
V=—-VS§.
m
The Schrodinger equation then implies that p and V satisfy
(1) The continuity equation: % +V-(pV)=0.
(2) A modified Hamilton-Jacobi equation (which involves the quantum potential).

Thus, the probability density p for a quantum particle evolves exactly according to a QTDS of
the form (2.8) with 0 = —V - V. This provides a concrete physical realization of our framework:
the quantum mechanical probability density flow is a special case of a quantum topological
dynamical system.

Importantly, in this quantum setting, the vector field V' = VS/m is generally not determined
by the classical equations of motion but contains additional quantum corrections. This illustrates

how QTDS can model dynamics beyond classical deterministic flows while maintaining a clear

probabilistic structure.

3. Microscopic Fixed Points

We now introduce the quantum analogue of a fixed point.

Definition 3.1 (Microscopic Fixed Point). Let F' be a quantum dynamics on M.

(a) In the discrete case, a point xg € M is a microscopic fixed point if for all p € D(M) we
have F(p)(zo) = p(o).

(b) In the continuous case, a point xo € M is a microscopic fixed point if for all p € D(M)
and allt € R, ®+(p)(x0) = p(xo).

This definition captures the idea that the probability of finding the system at xq is invariant
under the time evolution, regardless of the initial state.

Theorem 3.2. Let f : M — M be a homeomorphism and let F,, be the quantum dynamics of
the form (2.3), where {hy,} satisfies the cocycle condition (2.2).

(a) If zy € M is a microscopic fized point for F, then xzy is a fized point for f (i.e.,
f(zo) = o).

(b) Suppose xq is a fized point for f. Then xq is a microscopic fized point for F if and only
if hn(zo) =0 for all n € Z.

(¢) In particular, if hy is given by (2.4), then a fixed point xo of f is a microscopic fized
point if and only if o(xg) = 0.

Proof. (a) Assume x( is a microscopic fixed point. We will show that f~!(zg) = zg, which
implies f(zg) = x¢. Suppose, for contradiction, that f~!(z¢) # xo. Choose a density p such
that p(z¢) > 0 but p(f~!(x¢)) = 0. Then

Fi(p)(x0) = p(f " (0)) exp(ha(z0)) = 0.

But since zg is a microscopic fixed point, Fi(p)(zo) = p(zo) > 0, a contradiction. Hence,
S (z0) = @0, meaning f(zo) = zo.

Note: The same argument works for any n by choosing p with p(xg) > 0 and p(f~"(zp)) = 0.
Since microscopic fixed point condition holds for all n, we conclude f~"(z¢) = x¢ for all n, and

in particular for n = 1.
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(b) Suppose f(z9) = xog. Then f~"(x¢) = zo for all n. The condition for x( to be a microscopic
fixed point is
Fn(p)(x0) = p(x0) exp(hn (o)) = p(xo) for all p.
This holds if and only if exp(h,(x0)) = 1, i.e., hy(xo) = 0.
(c) If hy, is given by (2.4) and f(zo) = xo, then hy,(z¢) = no(zg). Thus, h,(xo) = 0 for all n
if and only if o(xg) = 0. O

An analogous theorem holds in the continuous setting.

Theorem 3.3. Let ¢, be a flow on M and ®; a quantum flow of the form (2.6), where {h;}
satisfies (2.5).
(a) If o is a microscopic fixed point for ®y, then xq is a fized point for ¢, (i.e., pi(xo) = o
for all t).
(b) If xg is a fized point for @y, then xg is a microscopic fixed point for ®; if and only if
hi(zg) =0 for all t.
(c) If hy is given by (2.7), then a fixed point xq is microscopic if and only if o(xg) = 0. If
o =—=V -V, this condition is V - V(xp) = 0.

4. Microscopic Periodic Points

We now generalize the concept of a fixed point to that of a periodic point.

Definition 4.1 (Microscopic Periodic Point). Let F' be a quantum dynamics on M.

(a) In the discrete case, a point xo € M is microscopic periodic with period o € Z* if for

all p € D(M), Fa(p) () = p(zo).
(b) In the continuous case, a point xo € M is microscopic periodic with period o > 0 if for
all p € D(M), ®a(p)(0) = p(x0)-

Theorem 4.2. Let f: M — M be a homeomorphism and F,, a quantum dynamics of the form
(2.3).
(a) If xo is microscopic periodic with period «, then xg is classically periodic with period o
(i.e., f*(zo) = x0).
(b) If xq is classically periodic with period «, then xg is microscopic periodic with period «
if and only if ho(zo) = 0.
(¢) If hy, is given by (2.4), then a classical a-periodic point xq is microscopic a-periodic if

and only if >-9=5 o(f*(x0)) = 0.

Proof. (a) The proof is similar to Theorem 3.2(a). Assume x( is microscopic a-periodic. If
f~%(xo) # xo, choose p with p(xo) > 0 and p(f~*(z¢)) = 0. This leads to the contradiction
0 = Fa(p)(xo) = p(z0) > 0. Thus f~*(z0) = o, so f*(z0) = Zo.

(b) If f*(zo) = xo, then f~%(x¢) = zp. The microscopic periodicity condition becomes

Fo(p)(w0) = p(o) exp(ha(zo)) = p(x0),

which holds for all p if and only if exp(ha(z0)) = 1, i.e., ha(zo) = 0.
(c) If hy, is given by (2.4) and f*(xg) = xo, then

-1

ha(z0) = Y o(f**(x0)) = Y _ a(f*(0)).

k=0 0

The result follows from part (b). O
92
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The set of microscopic periodic points shares a key property with its classical counterpart.

Theorem 4.3. Let f : M — M and F, be as in Theorem 4.2. If xg is microscopic periodic
with period o, then for every n € Z, the point f™(xq) is also microscopic periodic with period .

Proof. By Theorem 4.2(a), zg is classically periodic: f®(zg) = zo. It follows that f*(f"(zo)) =
M (f(xo)) = f™(xo), so f*(xo) is classically periodic. We must show hq (f"(z0)) = 0.

For all n, we have ho—n(x0) = hal(zo) + hon(f~*(z0)) = h_n(z0). On the other hand
ha—n(x0) = h_n(x0) + ha(f"(z)). Hence, ho(f™(z)) = 0. O

Remark 4.4. The concepts of microscopic fized and periodic points naturally extend to sets.

(a) Let ®; be a quantum flow on M. We call a measurable set A C M microscopically
invariant if for all p € D(M) and all t € R,

[ ao@ o= [ pta)da.

(b) In the discrete case, a set A is microscopically invariant under a quantum dynamics F

if for all p € D(M),
/ﬂM@M—/mmw
A A

This definition captures the intuitive notion that a set is invariant if the total probability mass
within it is conserved under the dynamics. Microscopic invariant sets represent a novel concept
that interpolates between measure-theoretic invariance (conservation of probability mass) and
topological invariance (set-wise preservation by the flow). They provide a rich field for further

investigation within the QTDS framework.

5. Conclusion and Outlook

In this paper, we have laid the foundation for the theory of Quantum Topological Dynamical
Systems (QTDS)—a probabilistic, quantum-inspired reformulation of dynamics on the space of
probability densities. We provided a general mechanism for constructing such dynamics from
classical systems and introduced the pivotal concepts of microscopic fixed points, periodic points,
and invariant sets. We established precise relationships between these new quantum notions and
their classical precursors.

Beyond these core results, we have addressed key foundational aspects: (1) specifying the
topological structure on D(M) and continuity requirements, (2) discussing existence and unique-
ness via infinitesimal generators, (3) clarifying the relationship to classical operator-theoretic
approaches (Koopman and transfer operators), and (4) initializing the theory of microscopic in-
variant sets. These elements justify the "Foundations” title and provide a solid basis for future
development.

The framework, while intentionally restricted to weighted lifts of classical flows, establishes
a precise dictionary for translating classical topological concepts into the language of evolving
probability densities. This provides a novel probabilistic lens through which to analyze deter-
ministic dynamical systems.

Specific Open Questions and Future Directions:

(1) Topological Refinement: The next natural step is to topologize D(M) more carefully
(e.g., with Wasserstein metrics or weak-* topology) and study the continuity properties
of F and ®; in these topologies.

(2) Ergodic Theory: A microscopic version of ergodicity, mixing, and the decomposition

theorem for invariant measures should be developed.
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(3) Non-commutative Extension: Can the framework be extended to non-commutative
spaces (the state space of operator algebras) while preserving the dictionary between
microscopic and classical concepts?

The relationship between our microscopic fixed points and the classical concept of invariant
measures [16] has been partially elucidated through the theory of microscopic invariant sets.
Additionally, the connection with transfer operator theory [3] and thermodynamic formalism
[13] suggests potential applications in statistical mechanics and dynamical systems theory.
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