[1] Balibrea, F., Jiménéz Lopéz, V., & Cánovas, J.S. (1999). Some results on entropy and sequence entropy. International Journal of Bifurcation and Chaos, 9, 1731–1742. DOI: https://doi.org/10.1142/s0218127499001218.
[2] Barreira, L., Pesin, Ya., & Schemling, J. (1997). On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos, 7, 27–38. DOI: https://doi.org/10.1063/1.166232.
[3] Brin, M., & Katok, A. (1983). On local entropy in geometric dynamics. 30–38, New York, Springer-Verlag, (Lecture Notes in Mathematics 1007). DOI: https://doi.org/10.1007/bfb0061408.
[4] Cánovas, J.S. (2007). Topological sequence entropy and topological dynamics of interval maps. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal, 14, 47–54.
[5] Cánovas, J.S., & Jimémez López, V. (2002). Computing explicitly topological sequence entropy: the unimodal case. Ann. Inst. Fourier, Grenoble, 52, 1093–1133. DOI: https://doi.org/10.5802/aif.1913.
[6] Kushnirenko, A.G. (1967). On Metric invariants of entropy type. Russ. Math. Surv, 22, 53–61. DOI: https://doi.org/10.1070/rm1967v022n05abeh001225.
[7] McMillan, B. (1953). The basic theorems of information theory. Ann. Math. Statist, 24, 196–219. DOI: https://doi.org/10.1214/aoms/1177729028.
[8] Newton, D. (1970). On Sequence entropy II. Math. Syst. Th, 4, 126–128. DOI: https://doi.org/10.1007/bf01691096.
[9] Pesin, Ya. (1977). Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys, 32, 54–114. DOI: https://doi.org/10.1070/rm1977v032n04abeh001639.
[10] Pesin, Ya., & Weiss, H. (1997). A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J. Stat. Phys, 86, 233–275. DOI: https://doi.org/10.1007/bf02180206.
[11] Pesin, Ya., & Weiss, H. (1997). The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples. Chaos, 7, 89–106. DOI: https://doi.org/10.1063/1.166242.
[12] Rahimi, M. (2015). A local approach to g-entropy. Kybernetika, 51, 231–245. DOI: https://doi.org/10.14736/kyb-2015-2-0231.
[13] Rahimi, M., & Assari, A. (2020). Mutual Entropy Map for Continuous Systems on Compact Metric Spaces. Mathematical Analysis and Convex Optimization, 1, 49–55. DOI: https://doi.org/10.29252/maco.1.1.6.
[14] Rahimi, M., & Assari, A. (2021). On local metric pressure of dynamical systems. Periodica Mathematica Hungarica, 82, 223–230. DOI: https://doi.org/10.1007/s10998-020-00355-w.
[15] Rahimi, M., Assari, A., & Ramezani, F. (2016). A local approach to Yager entropy of dynamical systems. International Journal of Fuzzy Systems, 18, 98–102. DOI: https://doi.org/10.1007/s40815-015-0062-z.
[16] Rahimi, M., & Mohammadi Anjedani, M. (2018). A local view on the Hudetz correction of the Yager entropy of dynamical systems. International Journal of General Systems, 48, 321–333. DOI: https://doi.org/10.1080/03081079.2018.1552688.
[17] Rahimi, M., & Shakouri, A. (2019). On Hudetz entropy localization. Fuzzy Sets and Systems, 367, 96–106. DOI: https://doi.org/10.1016/j.fss.2018.11.005.
[18] Rokhlin, V.A. (1959). Entropy of metric automorphism. Dokl. Akad. Nauk. SSSR, 124, 980–983.
[19] Takens, F., & Verbitski, E. (1999). Multifractal Analysis of Local Entropies for Expansive Homeomorphisms with Specification. Commun. Math. Phys, 203, 593–612. DOI: https://doi.org/10.1007/s002200050627.
[20] Walters, P. (1982). An introduction to ergodic theory. Springer-Verlag. DOI: https://doi.org/10.1007/springerreference_60354.
[21] Zhao, Y., & Pesin, Y. (2015). Scaled entropy for dynamical systems. J. Stat. Phys, 158, 447–475. DOI: https://doi.org/10.1007/s10955-014-1133-5.
[22] Zhao, Y., & Pesin, Y. (2016). Errutum to: Scaled entropy for dynamical systems. J. Stat. Phys, 162, 1654–1660. DOI: https://doi.org/10.1007/s10955-016-1451-x.