[1] Ali, S.T., Antoine, J.P., & Gazeau, J.P. (1993). Continuous frames in Hilbert spaces. Ann. Physics, 222, 1–37. DOI: https://doi.org/10.1006/aphy.1993.1016.
[2] Arambasic, L. (2007). On frames for countably generated Hilbert C∗-modules. Proc. Amer. Math. Soc, 135, 469–478. DOI: https://doi.org/10.1090/s0002-9939-06-08498-x.
[3] Bakic, D., & Guljas, B. (2002). On a class of module maps of Hilbert C∗-modules. Mathematical Communications, 7, 177–192.
[4] Christensen, O. (2008). Frames and Bases. Birkhauser, Boston. DOI: https://doi.org/10.1007/978-0-8176-4678-3.
[5] Christensen, O., & Laugesen, R.S. (2011). Approximate dual frames in Hilbert spaces and applications to Gabor frames. Sampl Theory Signal Image Process, 9, 77–90. DOI: https://doi.org/10.1007/BF03549525.
[6] Daubechies, I., Grossmann, A., & Meyer, Y. (1986). Painless nonorthogonal expansions. J. Math. Phys, 27, 1271–1283. DOI: https://doi.org/10.1063/1.527388.
[7] Duffin, R.J., & Schaeffer, A.C. (1952). A class of nonharmonic Fourier series. Trans. Amer. Math. Soc, 72, 341–366. DOI: https://doi.org/10.2307/1990760.
[8] Frank, M., & Larson, D.R. (2002). Frames in Hilbert C∗-modules and C∗-algebras. J. Operator Theory, 48, 273–314.
[9] Gabardo, J.P., & Han, D. (2003). Frame associated with measurable spaces. Adv. Comp. Math, 18, 127–147. DOI: https://doi.org/10.1023/A:1021312429186.
[10] Gabor, D. (1946). Theory of communications. J. Inst. Electr. Eng, 93, 429–457.
[11] Kaiser, G. (1994). A Friendly Guide to Wavelets. Birkhauser, Boston. DOI: https://doi.org/10.1007/978-0-8176-8111-1.
[12] Khosravi, A., & Khosravi, B. (2008). Fusion frames and g-frames in Hilbert C∗-modules.
Int. J. Wavelets Multiresolut. Inf. Process, 6, 433–446. DOI: https://doi.org/10.1142/S0219691308002458.
[13] Khosravi, A., & Mirzaee Azandaryani, M. (2014). Approximate duality of g-frames in Hilbert spaces. Acta. Math. Sci, 34, 639–652. DOI: https://doi.org/10.1016/S0252-9602(14)60036-9.
[14] Lance, E.C. (1995). Hilbert C∗-modules: A Toolkit for Operator Algebraists. Cambridge University Press, Cambridge.
[15] Mirzaee Azandaryani, M. (2015). Approximate duals and nearly Parseval frames. Turk. J. Math, 39, 515–526. DOI: https://doi.org/10.3906/mat-1408-37.
[16] Mirzaee Azandaryani, M. (2017). Bessel multipliers and approximate duals in Hilbert C∗-modules. J. Korean Math. Soc, 54, 1063–1079. DOI: https://doi.org/10.4134/JKMS.j150701.
[17] Mirzaee Azandaryani, M. (2017). On the approximate duality of g-frames and fusion frames. U. P. B. Sci. Bull. Ser A, 79, 83–94.
[18] Mirzaee Azandaryani, M. (2019). Approximate duals and morphisms of Hilbert C∗-modules. Ann Funct Anal, 10, 525–536. DOI: https://doi.org/10.1215/20088752-2019-0011.
[19] Mirzaee Azandaryani, M. (2020). An operator theory approach to the approximate duality of Hilbert space frames. J. Math. Anal. Appl, 489, 1–13 (124177). DOI: https://doi.org/10.1016/j.jmaa.2020.124177.
[20] Mirzaee Azandaryani, M., & Javadi, Z. (2022). Pseudo-duals of continuous frames in Hilbert spaces. J. Pseudo-Differ. Oper. Appl, 13, 1–16. DOI: https://doi.org/10.1007/s11868-022-00486-3.
[21] Rahimi, A., Darvishi, Z., & Daraby, B. (2019). Dual pair and approximate dual for continuous frames in Hilbert spaces. Math. Rep, 21, 173–191.
[22] Razghandi, A., & Arefijamaal, A.A. (2020). On the characterization of generalized dual frames. U. P. B. Sci. Bull. Ser A, 82, 161–170.
[23] Sun, W. (2006). G-frames and g-Riesz bases. J. Math. Anal. Appl, 322, 437–452. DOI: https://doi.org/10.1016/j.jmaa.2005.09.039.
[24] Xiao, X., & Zeng, X. (2010). Some properties of g-frames in Hilbert C∗-modules. J. Math. Anal. Appl, 363, 399–408. DOI: https://doi.org/10.1016/j.jmaa.2009.08.043.
[25] Yousefzadeheyni, A., & Abdollahpour, M.R. (2020). Some properties of approximately dual continuous g-frames in Hilbert spaces. U. P. B. Sci. Bull. Ser A, 82, 183–194.