[1] Casazza, P., Kutyniok, G., & Lammers, M.C. (2004). Duality principles in frame theory. J. Fourier Anal. Appl, 10, 383–408. DOI: https://doi.org/10.1007/s00041-004-3024-7.
[2] Casazza, P., Kutyniok, G., & Lammers, M.C. (2005). Duality principle, localization of frames, and Gabor theory, Optics and photonics. International Society for Optics and Photonics. DOI: https://doi.org/10.1117/12.615440.
[3] Christensen, O., Kim, H.O., & Kim, R.Y. (2011). On the duality principle by Casazza, Kutyniok, and Lammers. J. Fourier Anal. Appl, 17, 640–655. DOI: https://doi.org/10.1007/s00041-010-9151-4.
[4] Chuang, Z., & Zhao, J. (2015). On equivalent conditions of two sequences to be R-dual. Journal of
Inequalities and Applications, 10, 1–8. DOI: https://doi.org/10.1186/s13660-014-0529-8.
[5] Feichtinger, H.G., & Grochenig, K. (1997). Gabor frames and Time-Frequency Analysis of Distributions. Journal of Functional Analysis, 146, 464–495. DOI: https://doi.org/10.1006/jfan.1996.3078.
[6] Folland, G.B. (1994). A Course in Abstract Harmonic Analysis. CRC Press. DOI: https://doi.org/10.1201/b19172.
[7] Gabor, D. (1946). Theory of communications. J. Inst. Elec. Eng, 93, 429–457.
[8] Gröchenig, K. (2001). Foundation of time-frequency analysis. Birkhäuser, Boston. DOI: https://doi.org/10.1007/978-1-4612-0003-1.
[9] Ron, A., & Shen, Z. (1997). Weyl-Heisenberg frames and Riesz bases in L2(R). Duke Math. J, 89, 237–282. DOI: https://doi.org/10.1215/S0012-7094-97-08913-4.
[10] Stoeva, D.T., & Christensen, O. (2015). On R-duals and the duality principle in Gabor analysis. J. Fourier Anal. Appl, 21, 383–400. DOI: https://doi.org/10.1007/s00041-014-9376-8.
[11] Wexler, J., & Raz, S. (1990). Discrete Gabor expansions. Signal Proc, 21, 207–220. DOI: https://doi.org/10.1016/0165-1684(90)90087-F.
[12] Xiao, X.M., & Zhu, Y.C. (2009). Duality principle of frames in Banach spaces. Acta. Math. Sci. Ser. A. Chin, 29, 94–102.