Uniformizable functional Alexandroff spaces

Document Type : Original Article

Authors

1 School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran.

2 Department of Mathematics Education, Farhangian University, Tehran, Iran.

Abstract

In this paper, we show that the Alexandroff space X is uniformizable if and only if the collection of all smallest neighbourhoods is a partition of X. Moreover the Alexandroff space X is uniformizable and functional Alexandroff (k−primal) if and only if the collection of all smallest neighbourhoods is a partition of X into its finite subsets.

Keywords

Main Subjects


[1] Alexandroff, P.S. (1937). Diskrete Räume. Mat. Sbornik 2, 501–518.
[2] Arenas, F.G. (1999). Alexandroff spaces.
Acta Mathematica Universitatis Comenianae, 68(1), 17–25. http://eudml.org/doc/120504.
[3] Ayatollah Zadeh Shirazi, F., & Golestani, N. (2011). Functional Alexandroff spaces. Hacettepe Journal of Mathematics and Statistics, 40(4), 515–522. https://dergipark.org.tr/en/pub/hujms/issue/7759/101419.
[4] Ben Amor, A., Lazaar, S., Richmond, T., & Sabri, H. (2022). k-primal spaces. Topol. Appl, 309, Article ID 107907. DOI: https://doi.org/10.1016/j.topol.2021.107907.
[5] Dugundji, J. (1973). Topology.
Allyn and Bacon Series in Advanced Mathematics, Boston: Allyn and Bacon, Inc. XVI.
[6] Echi, O. (2012). The categories of flows of set and top.
Topol. Appl, 159(9), 2357–2366. DOI: https://doi.org/10.1016/j.topol.2011.11.059.
[7] Engelking, R. (1989). General topology.
Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag.
[8] Herda, H.H., & Metzler, R.C. (1966). Closure and interior in finite topological spaces.
Colloq. Math, 15, 211–216.
[9] McCord, M.C. (1966). Singular homology groups and homotopy groups of finite topological spaces.
Duke Math. J, 33, 465–474. DOI: https://doi.org/10.1215/S0012-7094-66-03352-7.
[10] Stong, R.E. (1966). Finite topological spaces.
Trans. Amer. Math. Soc, 123, 325–340. DOI: https://doi.org/10.1090/S0002-9947-1966-0195042-2.