[1] Adiguzel, R. S., Aksoy, U., Karapinar, E., & Erhan, I. M. (2020). On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci, 47(13), 10928–10939.
[2] Adiguzel, R. S., Aksoy, U., Karapinar, E., & Erhan, I. M. (2021). Uniqueness of solution for higherorder nonlinear fractional differential equations with multi-point andintegral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115, Paper No. 155.
[3] Dehghanian, M., Park, C., & Sayyari, Y. On the stability of hom-der on Banach algebras (Preprint).
[4] Dehghanian, M., & Modarres, S. M. S. (2012). Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups, J. Inequal. Appl, 34.
[5] Diaz, J. B., & Margolis, B. (1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc, 74, 305–309.
[6] Hammer, C., & Volkmann, P. (1991). Dre multiplikativen Losungen der parallelog rammgleichung, Abh. Math. sem. univ. Hamburg, 61, 197–201.
[7] Hwang, I., & Park, C. (2019). Bihom derivations in Banach algebras, J. Fixed Point Theory Appl, 21, no. 3, Paper No. 81.
[8] Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A, 27, 222–224.
[9] Kheawborisuk, A., Paokanta, S., & Senasukh, J. (2022). Ulam stability of hom-ders in fuzzy Banach algebars, C. Park, AIMS Math, 7(9), 16556–16568.
[10] Mirzavaziri, M., & Moslehian, M. S. (2006). Automatic continuity of σ-derivations on C∗-algebras, Proc. Am. Math. Soc, 134(11), 3319–3327.
[11] Moeini, B., Asadi, M., Aydi, H., & Noorani, M. S. (2019). C∗-Algebra-valued M-metric spaces and some related fixed point results, Ital. J. Pure Appl. Math, 41, 708–723.
[12] Park, C., Lee, J., & Zhang, X. (2019). Additive s-functional inequality and hom-derivations in Banach algebras, J. Fixed Point Theory Appl, 21, Paper No. 18.
[13] Park, C. (2005). Homomorphisms between Poisson J C∗-algebras, Bull. Braz. Math. Soc, 36, 79–97.
[14] Paokanta, S., Dehghania, M., Park, C., & sayyari, Y. (2023). A system of additive functional equations in complex Banach algebras, 56, 1–10.
[15] Runde, V. (2003). The fixed point alternative and the stability of functional equations, Fixed point Theory, 4(1), 91–96, MR2031824.
[16] Runde, V. (2002). Lectures on amenability, Lecture Notes in Mathematics. Springer- Verlag, Berlin.
[17] Sahoo, P. K., & Kannappan, P. (2011). Introduction to Functional Equations, CRC press, Boca. Ratom, Florida.
[18] Sayyari, Y., Dehghanian, M., Park, C., & Lee, J. (2022). Stability of hyper homomorphisms and hyper derivations in complex Banach algebras, AIMS Math, 7(6), 10700–10710.
[19] Thanyacharoen, A., & Sintunavarat, W. (2021). On new stability results for composite functional equations in quasi-β-normed spaces, Demonstr. Math, 54, 68–84.
[20] Ulam, S. M. (1960). A Collection of the Mathematical Problems, Interscience Publications, NewYork.