[1] Ahsani, M., & Ramezanpour, M. (2025). Jordan derivation on triangular algebras and trivial extentions. J. Alg. Appl., 24(7), 2550183 (13 pages). DOI: https://dx.doi.org/10.1142/S021949882550183X.
[2] Benkovič, D. (2005). Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl., 397, 235–244.
[3] Benkovič, D., & Širovnik, N. (2012). Jordan derivations of unital algebras with idempotents. Linear Algebra Appl., 437, 2271–2284.
[4] Brešar, M. (1988). Jordan derivation on semiprime rings. Proc. Amer. Math. Soc., 104, 1003–1006.
[5] Cheung, W.S. (2000). Mappings on triangular algebras. Ph.D. Dissertation, University of Victoria.
[6] Davidson, K.R. (1988). Nest Algebras. Wiley, New York.
[7] Ebrahimi Vishki, H.R., Mirzavaziri, M., & Moafian, F. (2016). Jordan higher derivations on trivial extension algebras. Commun. Korean Math. Soc., 31, 247–259.
[8] Ekrami, S. Kh. (2022). Jordan higher derivations, a new approach. J. Algebr. Syst., 10(1), 167–177.
[9] Erfanian Attar, A., & Ebrahimi Vishki, H.R. (2014). Jordan derivations on trivial extension algebras. J. Adv. Res. Pure Math., 6(4), 24–32.
[10] Ferrero, M., & Haetinger, C. (2002). Higher derivations and a theorem by Herstein. Quaest. Math., 25, 249–257.
[11] Fosner, A., & Jing, W. (2020). A note on Jordan derivations of triangular rings. Aequat. Math., 94(2), 277–285. DOI: https://doi.org/10.1007/s00010-019-00689-y.
[12] Ghahramani, H. (2013). Jordan derivations on trivial extensions. Bull. Iranian Math. Soc., 39(4), 635–645.
[13] Herstein, I. N. (1957). Jordan derivations of prime rings. Proc. Amer. Math. Soc., 8, 1104–1110.
[14] Xiao, Zh., & Wei F. (2010). Jordan higher derivations on triangular algebras. Linear Algebra Appl., 432(10), 2615–2622.
[15] Zhang, J. H. (1998). Jordan derivations on nest algebras. Acta Math. Sinica., 41(1), 205–212.
[16] Zhang, J.H., & Yu, W.Y. (2006). Jordan derivations of triangular algebras. Linear Algebra Appl., 419, 251–255.