نوع مقاله : مقاله پژوهشی
نویسنده
دانشکده فنی و مهندسی، شرق گیلان، دانشگاه گیلان، صندوق پستی ۶۳۱۵۷-۴۴۸۹۱, رودسر-ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسنده [English]
Generalizing the notion of character amenability for Banach algebras, we study the concept of $\varphi$-Connes amenability of a dual Banach algebra $\mathcal{A}$ with predual $\mathcal{A}_*$, where $\varphi$ is a homomorphism from $\mathcal{A}$ onto $\Bbb C$ that lies in $\mathcal{A}_*$. Also, we study $\Phi$-Connes amenability of $l^1$-Munn algebra $\mathcal{LM}(\mathcal{A}, P, m, n)$ that $\Phi$ is a character on $\mathcal{LM}(\mathcal{A}, P, m, n)$, $P$ is a sandavic matrix and $m,n\in \mathbb{N}$. We show $\Phi$-Connes amenability of $\mathcal{LM}(\mathcal{A}, P, m, n)$ is equivalent to $\phi$-Connes amenablity of $\mathcal{A}$ where $\phi$ is the unique character on $\mathcal{A}$ associated to $\Phi$. We discuss some hereditary properties of $\varphi$-Connes amenability. In fact, the investigation of the hereditary properties of Connes amenability of projective tensor product of two Banach algebras and the studying of the projectors on operator Banach algebras are the aims of this paper.
کلیدواژهها [English]