[1] Baker, A. C., & Baker, J. W. (1969). Algebras of measures on a locally compact semigroup. J. London Math. Soc, 2(1), 249–259. DOI: https://doi.org/10.1112/jlms/s2-1.1.249.
[2] Baker, A. C., & Baker J. W. (1970). Algebra of measures on locally compact semigroups II. J. London Math. Soc, 2(2), 651–659. DOI: https://doi.org/10.1112/jlms/2.Part_4.651.
[3] Baker, A. C., & Baker J. W. (1972). Algebra of measures on locally compact semigroups III. J. London Math. Soc, 4, 685–695. DOI: https://doi.org/10.1112/jlms/s2-4.4.685.
[4] Bresar, M., & Mathieu, M. (1995). Derivations mapping into the radical III. J. Funct. Anal, 133, 21–29. DOI: https://doi.org/10.1006/jfan.1995.1116.
[5] Fosner, M., & Persin, N. (2012). On a functional equation related to derivations in prime rings. Monatsh. Math, 167(2), 189–203. DOI: https://doi.org/10.1007/s00605-011-0319-z.
[6] Hewitt, E., & Ross, K. A. (1963). Abstract harmonic analysis. Volume I, Springer–Verlag, Berlin–Heidelberg, New York. DOI: https://doi.org/10.1007/978-1-4419-8638-2.
[7] Jun, K.W., & Kim, H.M. (2007). Approximate derivations mapping into the radical of Banach algebras. Taiwan. J. Math, 11, 277–288. DOI: https://doi.org/10.11650/twjm/1500404652.
[8] Lau, A. T.-M., & Pym, J. (1990). Concerning the second dual of the group algebra of a locally compact group. J. London Math. Soc, 41, 445–460.
[9] Maghsoudi, S., & Nasr-Isfahani, R. (2009). The Arens regularity of certain Banach algebras related to compactly cancellative foundation semigroups. Bull. Belg. Math. Soc, 16, 205–221. DOI: https://doi.org/10.36045/bbms/1244038134.
[10] Maghsoudi, S., & Nasr-Isfahani, R. (2012). On the second conjugate of the weighted semigroup algebra for a locally compact semigroup. Quaestiones Mathematicae, 35, 219–227. DOI: https://doi.org/10.2989/16073606.2012.697260.
[11] Maghsoudi, S., Nasr-Isfahani, R., & Rejali, A. (2008). Arens multiplication on Banach algebras related to locally compact semigroups. Math. Nachr, 281, 1495–1510. DOI: https://doi.org/10.1002/mana.200710691.
[12] Mathieu, M., & Murphy, G. J. (1991). Derivations mapping into the radical. Arch. Math, 57, 469–474. DOI: https://doi.org/10.1007/BF01246745.
[13] Mathieu, M., & Runde, V. (1992) Derivations mapping into the radical II. Bull. Lond. Math. Soc, 24, 485–487.
[14] Mehdipour, M. J., & Saeedi, Z. (2016). Derivations On group algebras of a locally compact abelian group. Monatsh Math, 180, 595–605. DOI: https://doi.org/10.1007/s00605-015-0800-1.
[15] Posner, E.C. (1957). Derivations in prime rings. Proc. Amer. Math. Soc, 8, 1093–1100. DOI: https://doi.org/10.2307/2032686.
[16] Singer, I.M., & Wermer, J. (1955). Derivations on commutative normed algebras. Math. Ann, 129, 260–264. DOI: https://doi.org/10.1007/BF01362370.
[17] Sinclair, A.M. (1969). Continuous derivations on Banach algebras. Proc. Amer. Math. Soc, 20(1), 166–170. DOI: https://doi.org/10.2307/2035981.
[18] Sleijpen, G. L. G. (1981). The dual of the space of measures with continuous translations. Semigroup Forum, 22, 139–150. http://eudml.org/doc/134473.
[19] Sleijpen, G. L. G. (1976). Convolution measure algebras on semigroups. Ph.D. Thesis Katholike Universiteit, The Netherlands.
[20] Thomas, M. (1988). The image of a derivation is contained in the radical. Ann. Math, 128, 435–460. DOI: https://doi.org/10.2307/1971432.
[21] Vukman, J. (2008). On left Jordan derivations of rings and Banach algebras. Aequ. Math, 75, 260–266. DOI: https://doi.org/10.1007/s00010-007-2872-z.