اشتقاق‌ها روی جبرهای باناخ وابسته به رده خاصی از نیم‌گروه‌های توپولوژیکی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده مهندسی، دانشکدگان فارابی، دانشگاه تهران، تهران، ایران

10.22091/maa.2025.13014.1032

چکیده

در این مقاله به مطالعه اشتقاق‌ها روی جبر باناخ $L_0^{\infty}(S;M_a(S))^{\ast}$ برای رده خاصی از نیم‌گروه‌های توپولوژیک جابجایی 
$S$ می‌پردازیم. ما ثابت می‌کنیم که تصویر هر اشتقاق روی $L_0^{\infty}(S;M_a(S))^{\ast}$ در رادیکالش قرار دارد. همچنین اشتقاق روی $L_0^{\infty}(S;M_a(S))^{\ast}$ پیوسته است اگر و تنها اگر تحدید آن اشتقاق به پوچساز راست$L_0^{\infty}(S;M_a(S))^{\ast}$ 
پیوسته باشد. درنهایت یکی از یافته‌های اصلی این مقاله نتیجه می‌دهد که تنها اشتقاق مرکز ساز روی$L_0^{\infty}(S;M_a(S))^{\ast}$ 
نگاشت صفر است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Derivations on Banach algebras related to certain class of topological semigroup

نویسنده [English]

  • Ahmad Alinejad
Department of Engineering, College of Farabi, University of Tehran, Iran
چکیده [English]

In this paper, we investigate derivations on the Banach algebra $L_{0}^{\infty}(S;M_a(S))^*$ for certain class of topological semigroup. We show that any derivation on $L_{0}^{\infty}(S;M_a(S))^*$ maps it into its radical and a derivation on $L_{0}^{\infty}(S;M_a(S))^*$ is continuous if and only if its restriction to the right annihilator of $L_{0}^{\infty}(S;M_a(S))^*$ is continuous. Finally, we prove that the zero map is the only centralizing derivation on $L_{0}^{\infty}(S;M_a(S))^*$.

کلیدواژه‌ها [English]

  • Derivation
  • Foundation semigroup
  • Compactly cancellative semigroup
  • Semigroup algebra
  • Measure algebra
[1] Baker, A. C., & Baker, J. W. (1969). Algebras of measures on a locally compact semigroup. J. London Math. Soc, 2(1), 249–259. DOI: https://doi.org/10.1112/jlms/s2-1.1.249.
[2] Baker, A. C.,
& Baker J. W. (1970). Algebra of measures on locally compact semigroups II. J. London Math. Soc, 2(2), 651–659. DOI: https://doi.org/10.1112/jlms/2.Part_4.651.
[3] Baker, A. C.,
& Baker J. W. (1972). Algebra of measures on locally compact semigroups III. J. London Math. Soc, 4, 685–695. DOI: https://doi.org/10.1112/jlms/s2-4.4.685.
[4] Bresar, M.,
& Mathieu, M. (1995). Derivations mapping into the radical III. J. Funct. Anal, 133, 21–29. DOI: https://doi.org/10.1006/jfan.1995.1116.
[5] Fosner, M.,
& Persin, N. (2012). On a functional equation related to derivations in prime rings. Monatsh. Math, 167(2), 189–203. DOI: https://doi.org/10.1007/s00605-011-0319-z.
[6] Hewitt, E.,
& Ross, K. A. (1963). Abstract harmonic analysis. Volume I, Springer–Verlag, Berlin–Heidelberg, New York. DOI: https://doi.org/10.1007/978-1-4419-8638-2.
[7] Jun, K.W.,
& Kim, H.M. (2007). Approximate derivations mapping into the radical of Banach algebras. Taiwan. J. Math, 11, 277–288. DOI: https://doi.org/10.11650/twjm/1500404652.
[8] Lau, A. T.-M.,
& Pym, J. (1990). Concerning the second dual of the group algebra of a locally compact group. J. London Math. Soc, 41, 445–460. 
[9] Maghsoudi, S., & Nasr-Isfahani, R. (2009). The Arens regularity of certain Banach algebras related to compactly cancellative foundation semigroups. Bull. Belg. Math. Soc, 16, 205–221. DOI: https://doi.org/10.36045/bbms/1244038134.
[10] Maghsoudi, S.,
& Nasr-Isfahani, R. (2012). On the second conjugate of the weighted semigroup algebra for a locally compact semigroup. Quaestiones Mathematicae, 35, 219–227. DOI: https://doi.org/10.2989/16073606.2012.697260.
[11] Maghsoudi, S., Nasr-Isfahani, R.,
& Rejali, A. (2008). Arens multiplication on Banach algebras related to locally compact semigroups. Math. Nachr, 281, 1495–1510. DOI: https://doi.org/10.1002/mana.200710691.
[12] Mathieu, M.,
& Murphy, G. J. (1991). Derivations mapping into the radical. Arch. Math, 57, 469–474. DOI: https://doi.org/10.1007/BF01246745.
[13] Mathieu, M.,
& Runde, V. (1992) Derivations mapping into the radical II. Bull. Lond. Math. Soc, 24, 485–487.
[14] Mehdipour, M. J.,
& Saeedi, Z. (2016). Derivations On group algebras of a locally compact abelian group. Monatsh Math, 180, 595–605. DOI: https://doi.org/10.1007/s00605-015-0800-1.
[15] Posner, E.C. (1957). Derivations in prime rings.
Proc. Amer. Math. Soc, 8, 1093–1100. DOI: https://doi.org/10.2307/2032686.
[16] Singer, I.M.,
& Wermer, J. (1955). Derivations on commutative normed algebras. Math. Ann, 129, 260–264. DOI: https://doi.org/10.1007/BF01362370.
[17] Sinclair, A.M. (1969). Continuous derivations on Banach algebras.
Proc. Amer. Math. Soc, 20(1), 166–170. DOI: https://doi.org/10.2307/2035981.
[18] Sleijpen, G. L. G. (1981). The dual of the space of measures with continuous translations.
Semigroup Forum, 22, 139–150. http://eudml.org/doc/134473.
[19] Sleijpen, G. L. G. (1976). Convolution measure algebras on semigroups.
Ph.D. Thesis Katholike Universiteit, The Netherlands.
[20] Thomas, M. (1988). The image of a derivation is contained in the radical.
Ann. Math, 128, 435–460. DOI: https://doi.org/10.2307/1971432.
[21] Vukman, J. (2008). On left Jordan derivations of rings and Banach algebras.
Aequ. Math, 75, 260–266. DOI: https://doi.org/10.1007/s00010-007-2872-z. 
دوره 2، شماره 2 - شماره پیاپی 3
در حال آماده سازی
دی 1403
صفحه 69-81
  • تاریخ دریافت: 11 مرداد 1403
  • تاریخ بازنگری: 03 آبان 1403
  • تاریخ پذیرش: 10 آبان 1403