مروری بر (کن) میانگین‌پذیری جبرهای باناخ (دوگان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه ریاضی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

10.22091/maa.2025.12965.1029

چکیده

در این مقاله، مروری بر مفاهیم و نتایج مهم مرتبط با میانگین‌پذیری در جبرهای باناخ، به‌ویژه در حالت دوگان، ارائه می‌دهیم. تمرکز اصلی بر بررسی دیدگاه‌های معاصر و توسعه‌های مرتبط با میانگین‌پذیری در ساختارهای جبرهای باناخ است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A survey on (Connes) amenability of (dual) Banach algebras

نویسندگان [English]

  • Mohammad Reza Sorouhesh 1
  • Amin Mahmoodi 2
1 Department of Mathematics, ST.C., Islamic Azad University, Tehran, Iran
2 Department of Mathematics, CT.C., Islamic Azad University, Tehran, Iran
چکیده [English]

This paper provides a survey of recent advances concerning (Connes) amenability in the context of (dual) Banach algebras. 

کلیدواژه‌ها [English]

  • Amenability
  • Connes amenability
  • Dual Banach algebra
[1] Bade, W. G., Curtis, P. C., & Dales, H. G. (1987). Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., 55, 359-377. DOI: https://doi.org/10.1093/plms/s3-55_2.359.
[2] Bonsal, F.,
& Duncan, J. (1973). Complete normed algebras, Springer Verlag. DOI: https://doi.org/10.1007/978-3-642-65669-9.
[3] Connes, A. (1976). Classification of injective factors,
Ann. of Math., 104 , 73-114. DOI: https://doi.org/10.2307/1971057.
[4] Connes, A. (1978). On the cohomology of operator algebras,
J. Funct. Anal., 28 , 248-253. DOI: https://doi.org/10.1016/0022-1236(78)90088-5.
[5] Dales, H. G. (2001). Banach algebras and automatic continuity,
Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198500131.001.0001.
[6] Dales, H. G., Lau, A. T.
& Strauss, D. (2010). Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc., 205. DOI: https://doi.org/10.1090/S0065-9266-10-00595-8.
[7] Dales, H. G.,
& Loy, R. J. (2010). Approximate amenability of semigroup algebras and Segal algebras, Disser. Math., 474, 1-58. DOI: https://doi.org/10.4064/dm474-0-1.
[8] Dales, H. G., Loy, R. J.,
& Zhang, Y. (2006). Approximate amenability for Banach sequence algebras, Studia Math., 177, 81-96. DOI: https://doi.org/10.4064/sm177-1-6.
[9] Daws, M. (2007). Dual Banach algebras: representations and injectivity,
Studia Math., 178, 235-275. DOI: https://doi.org/10.4064/sm178-3-3.
[10] Daws, M. (2006). Connes amenability of bidual and weighted semigroup algebras,
Math. Scand., 99 , 217-246. DOI: https://doi.org/10.7146/math.scand.a-15010.
[11] Day, M. M. (1949). Means on semigroups and groups,
Bull. Amer. Math. Soc., 55, 1054-1055. DOI: https://www.ams.org/journals/tran/1950-069-00/S0002-9947-1950-0044031-5/S0002-9947-1950-0044031-5.pdf.
[12] Esslamzadeh, G. H., Shojaee, B.,
& Mahmoodi, A. (2012). Approximate Connes amenability of dual Banach algebras, Bull. Belg. Math. Soc. Simon Stevin., 10, 193-213. DOI: https://doi.org/10.36045/bbms/1337864267.
[13] Ghaffari, A.
& Javadi, S. (2017). φ-Connes amenability of dual Banach algebras, Bull. Iran. Math. Soc., 43, 25-39. DOI: https://doi.org/10.22044/jas.2019.8503.1415.
[14] Ghahramani, F.,
& Loy, R. J. (2004). Generalized notions of amenability, J. Funct. Anal., 208, 25-39. DOI: https://doi.org/10.1016/S0022-1236(03)00214-3.
[15] Ghahramani, F., Loy, R. J.,
& Zhang, Y. (2008). Generalized notions of amenability II, J. Funct. Anal., 254, 1776-1810. DOI: https://doi.org/10.1016/j.jfa.2007.12.011. 
[16] Ghahramani, F. & Zhang, Y. (2007). Pseudo-amenable and Pseudo-Contractible Banach algebras, Math. Proc. Camb. Phil. Soc., 142, 111-123. DOI: https://doi.org/10.1017/S0305004106009649.
[17] Ghoraishi, S., Mahmoodi, A.
& Medghalchi, A. R. (2018). Amenability-Like properties of C(X,A), Filomat, 35, 2701-2706. DOI: https://doi.org/10.2298/FIL1808701G.
[18] Helemskii, A. Ya. (1991). Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule (translated from the Russion).
Math. USSR-Sb, 68 , 555-566. DOI: https://doi.org/10.1070/SM1991v068n02ABEH001374.
[19] Helemskii, A. Ya. (1989). The Homology of Banach and topological algebras,
Springer. DOI: https://doi.org/10.1007/978-94-009-2354-6.
[20] Hu, Z., Monfared, M. S.
& Traynor, T. (2009). On character amenable Banach algebras, Studia Math., 35, 53-78. DOI: https://doi.org/10.4064/sm193-1-3.
[21] Jaberi, A.
& Mahmoodi, A. (2022). On φ-amenability of dual Banach algebras, Bull. Aust. Math. Soc., 105 303-313. DOI: https://doi.org/10.1017/S0004972721000538.
[22] Johnson, B. E. (1987). Derivations from
L1(G) into L1(G) and L1(G), Harmonic Analysis (Luxembourg), Lecture Notes in Mathematics, Springer Verlag, 1359, 191-198. DOI: https://doi.org/10.1007/BFb0086599.
[23] Johnson, B. E. (1972). Cohomology in Banach algebras,
Mem. Amer. Math. Soc., 127. DOI: https://searchworks.stanford.edu/view/3763985.
[24] Johnson, B. E., Kadison R. V.
& Ringrose, J. (1972). Cohomology of operator algebras III, Bull. Soc. Math. France., 73-79. DOI: https://doi.org/10.24033/bsmf.1731.
[25] Johnson, B. E. (1972). Approximate diagonals and cohomology of certain annhilator Banach algebras,
Amer. J. Math., 94, 685-698. DOI: https://doi.org/10.2307/2373751.
[26] Kaniuth, E., Lau A. T.
& Pym, J. (2008). On φ-amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144, 85-96. DOI: https://doi.org/10.1017/S0305004107000874.
[27] Mahmoodi, A. (2018).
φ-Contractibility and φ-Connes amenability coincide with some older notions, Bull. Aust. Math. Soc., 97, 274-278. DOI: https://doi.org/10.1017/S0004972717000909.
[28] Mahmoodi, A. (2014). Connes amenability-like properties,
Studia Math., 220, 55-72. DOI: https://doi.org/10.4064/sm220-1-3.
[29] Mahmoodi, A. (2014). On
φ-Connes amenability of dual Banach algebras, J. Linear. Topol. alg., 3, 211-217.
[30] Mahmoodi, A. (2013). Approximate injectivity of dual Banach algebras,
Bull. Belg. Math. Soc. Simon Stevin., 20, 835-842. DOI: https://doi.org/10.36045/bbms/1385390767.
[31] Monfared, M. S. (2008). Character amenability of Banach algebras,
Math. Proc. Camb. Phil. Soc., 144, 697-706. DOI: https://doi.org/10.1017/S0305004108001126. 
[32] Paterson, A. L. T. (1988). Amenability, Amer. Math. Soc.. DOI: https://www.ams.org/books/surv/029/.
[33] Runde, V. (2020). Amenable Banach algebras,
Springer Monographs in Mathematics. DOI: https://doi.org/10.1007/978-1-0716-0351-2.
[34] Runde, V. (2004). Dual Banach algebras : Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule,
Math. Scand., 95, 124-144. DOI: https://doi.org/10.7146/math.scand.a-14452.
[35] Runde, V. (2001). Amenability for dual Banach algebras,
Studia Math., 148, 47-66. DOI: https://doi.org/10.48550/arXiv.math/0203199.
[36] Runde, V.
& Uygul, F. (2015). Connes-amenability of Fourier-Stielties algebras, Bull. London Math. Soc.,47, 555-564. DOI: https://doi.org/10.1112/blms/bdv030.
[37] Samea, H. (2009). Essential amenability of abstract Segal algebras,
Bull. Aust. Math. Soc., 79, 319-235. DOI: https://doi.org/10.1017/S0004972708001329.
[38] Shakeri, M.
& Mahmoodi, A. (2018). Pointwise amenability for dual Banach algebras, Bull. Belg. Math. Soc. Simon Stevin, 25 , 1-9. DOI: https://doi.org/10.36045/bbms/1536631234.
[39] Shojaee, B.
& Amini, M. (2017). Character Connes-amenability of dual Banach algebras, Period. Math. Hung., 74 , 31-39. DOI: https://doi.org/10.1007/s10998-016-0176-6.
[40] Ziamanesh, Shojaee, M. B.
& Mahmoodi, A. (2019). Essential amenability of dual Banach algebras, Bull. Aust. Math. Soc., 100 , 479-488. DOI: https://doi.org/10.1017/S0004972719000510. 
دوره 2، شماره 2 - شماره پیاپی 3
در حال آماده سازی
دی 1403
صفحه 39-68
  • تاریخ دریافت: 08 مرداد 1403
  • تاریخ بازنگری: 29 مهر 1403
  • تاریخ پذیرش: 08 آبان 1403