[1] Chen, R. & Paschalidis, I. A robust learning approach for regression models based on distributionally robust optimization. Journal Of Machine Learning Research. 19, 1-48 (2018). DOI: https://dl.acm.org/doi/10.5555/3291125.3291138.
[2] Dandi, Y., Stephan, L., Krzakala, F., Loureiro, B. & Zdeborová, L. Universality laws for Gaussian mixtures in generalized linear models. Journal of Statistical Mechanics: Theory and Experiment. 10 (2024), 103402 (2024). DOI: https://doi.org/10.1088/1742-5468/ad65e7
[3] Febrero-Bande, M., Fuente, M., Darbalaei, M. & Amini, M. Functional regression models with functional response: a new approach and a comparative study. Computational Statistics. pp. 1-27 (2024). DOI: https://doi.org/10.1007/s00180-024-01572-4.
[4] Fiedler, C., Herty, M. & Trimpe, S. On kernel-based statistical learning theory in the mean field limit. Advances In Neural Information Processing Systems. 36 (2024). DOI: https://doi.org/10.48550/arXiv.2310.18074.
[5] Kowalski, M. Sparse regression using mixed norms. Applied And Computational Harmonic Analysis. 27, 303-324 (2009). DOI: https://doi.org/10.1016/j.acha.2009.05.006.
[6] Raj, K. & Jamwal, S. Applications of statistical convergence to n-normed spaces. Advances In Pure And Applied Mathematics. 7, 197-204 (2016). DOI: https://doi.org/10.1515/apam-2015-0019.
[7] Ren, C., Dai, D. & Yan, H. Robust classification using L2, 1-norm based regression model. Pattern Recognition. 45, 2708-2718 (2012). DOI: https://doi.org/10.1016/j.patcog.2012.01.003.