[1] Araujo, J. (2006). The noncompact Banach-Stone theorem. J. Oper. Theory, 55(2), 285–294.
[2] Araujo, J., & Dubarbie, L. (2011). Noncompactness and noncompleteness in isometries of Lipschitz spaces. J. Math. Anal. Appl, 377, 15–29. DOI: https://doi.org/10.1016/j.jmaa.2010.09.066.
[3] Hindman, N., & Strauss, D. (2012). Algebra in the Stone-Čech compactification. Theory and applications, de Gruyter Expositions in Mathematics, 27, DOI: https://doi.org/10.1515/9783110258356.
[4] Hosseini, M. (2018). Isometries on spaces of absolutely continuous vector-valued functions. J. Math. Anal. Appl, 463(1), 386–397. DOI: https://doi.org/10.1016/j.jmaa.2018.03.037.
[5] Hosseini, M., & Font, J. J. (2020). Isometries on spaces of absolutely continuous functions in a noncompact framework. J. Math. Anal. Appl, 487(1). 1–11. DOI: https://doi.org/10.1016/j.jmaa.2020.123962.
[6] Ranjbar-Motlagh, A. (2014). A note on isometries of Lipschitz spaces. J. Math. Anal. Appl, 411(2), 555–558. DOI: https://doi.org/10.1016/j.jmaa.2013.10.003.
[7] Ranjbar-Motlagh, A. (2023). A Banach-Stone type theorem for space of vector-valued differentiable maps. Analysis Mathematica, (49), 841–854. DOI: https://doi.org/10.1007/s10476-023-0232-4.
[8] Royden, H. L. (1963). Real Analysis. The Macmillan Co., New York.
[9] Tonev, T., & Yates, R. (2009). Norm-linear and norm-additive operators between uniform algebras. J. Math. Anal. Appl, (120877607), 357(1), 45–53. DOI: https://doi.org/10.1016/J.JMAA.2009.03.039.