On Rado's theorem and its related problems

Document Type : Original Article

Authors

Department of Mathematics, University of Guilan, Rasht, Guilan, Iran

Abstract

In this paper, we state Rado's theorem, Ramsey families, and their connections with ergodic theory and combinatorial problems. We discuss the historical development of these concepts since their inception to how some problems in the fields of combinatorics and number theory were formulated and solved, particularly through the lens of dynamical systems. We also address some open questions in this field.

Keywords

Main Subjects


[1] Beiglböck, M., Bergelson, V., Hindman, N., & Strauss, D. (2006). Multiplicative structures in additively large sets. J. Combin. Theory Ser. A, 113, 1219–1242. DOI: https://doi.org/10.1016/j.jcta.2005.11.003.
[2] Beiglböck, M., Bergelson, V., Hindman, N.,
& Strauss, D. (2008). Some new results in multiplicative and additive Ramsey theory. Trans. Amer. Math. Soc, 360, 819–847. DOI: https://doi.org/10.1090/S0002-9947-07-04370-X.
[3] Bergelson, V. (1987). Ergodic Ramsey theory.
Logic and combinatorics, 65, 63–87.
[4] Bergelson, V.,
& Leibman, A. (1996). Polynomial extension of van der Wearden’s and Szemeredi’s theorem. J. Amer. Math. Soc, 9, 725–753.
[5] Brauer, A. (1928). Ubre Sequenzen von Potenzresten.
Sitzungsberichte de Preussischen Akademie der Wissenschaften, Physicalish-Mathematische Klasse, 9–16.
[6] Cilleruelo, J. (2012). Combinatorial problems in finite fields and Sidon sets.
Combinatorica, 32, 497–511. DOI: https://doi.org/10.1007/s00493-012-2819-4. 
[7] Deuber, W. (1973). Partitionen und lineare Gleichungssysteme. In Math. Z, 133, 109–123. DOI: https://doi.org/10.1007/BF01237897.
[8] Erdös, P.,
& Turan, P. (1936). On some sequences of integers. J. London Math. Soc, 11, 261–264. DOI: https://doi.org/10.1112/jlms/s1-11.4.261.
[9] Frantzikinakis, N.,
& Host, B. (2017). Higher order Fourier analysis of multiplicative functions and applications. J. Amer. Math. Soc, 30, 67–157. DOI: https://doi.org/10.1090/jams/857.
[10] Furstenberg, H. (1977). Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions.
J. d’Analyse math, 31, 204–256. DOI: https://doi.org/10.1007/BF02813304.
[11] Furstenberg, H., Katznelson, Y.,
& Orstein, D. (1979). The ergodic theoretical proof of Szemerédi’s theorem. Bull. Amer. Math. Soc, 7, 427–552. DOI: https://doi.org/10.1090/S0273-0979-1982-15052-2.
[12] Green, B.,
& Sanders, T. (2016). Monochoromatic sums and products. Dis. Anal. DOI: https://doi.org/10.19086/da.613.
[13] Hindman, N.,
& Strauss, D. (2012). Algebra in Stone-Cˇech compactification. Theory and application. De Gruyter Expositions in Mathematics, 27. Walter de Gruyter Co., Berlin. DOI: https://doi.org/10.1515/9783110258356.
[14] McCutcheon, R. (2010). A variant of density Hales-Jewett theorem.
Bull. Lond. Math. Soc, 42,974–980. DOI: https://doi.org/10.1112/blms/bdq051.
[15] Moreira, J. (2016). Partition Regular Polynomial Patterns in Commutative Semigroups.
Ohio State University.
[16] Moreira, J. (2017). Monochromatic sums and products in
N. Annals of Math, 185, 1069–1090. DOI: https://doi.org/10.4007/annals.2017.185.3.10.
[17] Rado, R. (1943). Note on combinatorial analysis.
Proc. London Math. Soc, 48, 122–160.
[18] Sárközy, A. (1978). On difference sets of sequences of integers. I.
Acta Math. Acad. Sci. Hungar, 31, 125–149. DOI: https://doi.org/10.1007/BF01901984.
[19] Schur, I. (1916). Uber die Kongruenz
xm + ym = zm(mod p). Jahresbericht der Deutschen Math.Verein, 25, 114–117.
[20] Shkredov, I.D. (2010). On monochromatic solutions of some nonlinear equations in
Z=pZ. Math Notes, 88, 603–611. DOI: https://doi.org/10.1134/S0001434610090336.
[21] Szemerédi, E. (1975). On the sets of integers containing no k elements in arithmetic progressions.
Acta. Arith, 27, 299–345. DOI: https://doi.org/10.4064/AA-27-1-199-245.
[22] Van der Waerden, B.L. (1927). Beweis einer Baudetsvhen Vermutung.
Nieuw. Arch. Wisk, 15, 212–216.