Jordan higher derivations on some matrix algebras

Document Type : Original Article

Author

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

Abstract

In this article, we study Jordan higher derivations on unital algebras with non-trivial idempotent. We extend some previous results on Jordan derivations of such algebras to Jordan higher derivations and show that, under mild conditions, every Jordan higher derivation on a unital algebra with a non-trivial idempotent is a higher derivation. We apply this result to  several classes of matrix algebras, including the triangular algebra $\mathrm{Tri}(A, X, B)$, the algebra of upper triangular matrices $T_n(\cR)$, and the nest algebra $T(\cN)$. This allows us to extend previous results on Jordan derivations to Jordan higher derivations for these algebras.

Keywords

Main Subjects


[1] Ahsani, M., & Ramezanpour, M. (2025). Jordan derivation on triangular algebras and trivial extentions. J. Alg. Appl., 24(7), 2550183 (13 pages). DOI: https://dx.doi.org/10.1142/S021949882550183X.
[2] Benkovič, D. (2005). Jordan derivations and antiderivations on triangular matrices.
Linear Algebra Appl., 397, 235–244.
[3] Benkovič, D.,
& Širovnik, N. (2012). Jordan derivations of unital algebras with idempotents. Linear Algebra Appl., 437, 2271–2284.
[4] Brešar, M. (1988). Jordan derivation on semiprime rings.
Proc. Amer. Math. Soc., 104, 1003–1006.
[5] Cheung, W.S. (2000). Mappings on triangular algebras.
Ph.D. Dissertation, University of Victoria.
[6] Davidson, K.R. (1988). Nest Algebras.
Wiley, New York.
[7] Ebrahimi Vishki, H.R., Mirzavaziri, M.,
& Moafian, F. (2016). Jordan higher derivations on trivial extension algebras. Commun. Korean Math. Soc., 31, 247–259.
[8] Ekrami, S. Kh. (2022). Jordan higher derivations, a new approach.
J. Algebr. Syst., 10(1), 167–177.
[9] Erfanian Attar, A.,
& Ebrahimi Vishki, H.R. (2014). Jordan derivations on trivial extension algebras. J. Adv. Res. Pure Math., 6(4), 24–32.
[10] Ferrero, M.,
& Haetinger, C. (2002). Higher derivations and a theorem by Herstein. Quaest. Math., 25, 249–257.
[11] Fosner, A.,
& Jing, W. (2020). A note on Jordan derivations of triangular rings. Aequat. Math., 94(2), 277–285. DOI: https://doi.org/10.1007/s00010-019-00689-y.
[12] Ghahramani, H. (2013). Jordan derivations on trivial extensions.
Bull. Iranian Math. Soc., 39(4), 635–645.
[13] Herstein, I. N. (1957). Jordan derivations of prime rings.
Proc. Amer. Math. Soc., 8, 1104–1110.
[14] Xiao, Zh.,
& Wei F. (2010). Jordan higher derivations on triangular algebras. Linear Algebra Appl., 432(10), 2615–2622.
[15] Zhang, J. H. (1998). Jordan derivations on nest algebras.
Acta Math. Sinica., 41(1), 205–212.
[16] Zhang, J.H.,
& Yu, W.Y. (2006). Jordan derivations of triangular algebras. Linear Algebra Appl., 419, 251–255.