[1] Bonsall, F., & Duncan, J. (1973). An operator theory approach to the approximate duality of Hilbert space frames. Springer-Verlag.
[2] Esslamzadeh, G. H. (1999). Banach algebra structure and amenability of a class of matrix algebras with applications. J. Funct. Anal., 161, 364–383.
[3] Esslamzadeh, G. H. (2004). Representation theory and positive functionals of involutive l1-Munn algebras, Semigroup Forum., 69, 51–62.
[4] Ghaffari, A. (2011). Projections and invariant means related to some Banach algebras. Bull. Belg. Math. Soc. Simon Stevin, 18, 121–133.
[5] Ghaffari, A., & Javadi, S. (2017). φ-Connes amenability of dual Banach algebras. Bull. Soc. Math. Iran., 43, 25–39.
[6] Ghahramani, F., Loy, R., & Willis, G. A. (1996). Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., 124, 1489-1497.
[7] Hewitt, E., & Ross, K. A. (1963). Abstract Harmonic Analysis, Vol. I, Springer Verlag, Berlin, 1963:Vol. II, Springer Verlag.
[8] Kaniuth, E., Lau, A. T., & Pym, J. (2008). On φ-amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc., 144, 85–96.
[9] Lau, A. T., & Losert, V. (1986). weak∗-closed complemented invariant subspaces of L1(G) and amenable locally compact groups, Pacific J. Math., 123, 149–159.
[10] Runde, V. (2004). Dual Banach algebras: Connes amenability, normal virtual diagonals, and injectivity of the predual bimodule. Math. Scand., 95, 124–144.