Morita Equivalence and Cohomological Properties of Generalized Matrix Banach Algebras

Document Type : Original Article

Authors

1 Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran

2 Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Abstract

In this article, we first establish the Morita equivalence between a generalized matrix Banach algebra and its corner algebra under certain conditions. Then, by applying this equivalence relation, we show that the Hochschild (or homology) cohomology group of a generalized matrix Banach algebra is isomorphic to the Hochschild (or homology) cohomology groups of its corner algebra.

Keywords

Main Subjects


[1] Akbari, M., & Habibian, F. (2023). Higher dimensional amenability for a generalized matrix Banach algebra, Houston Journal of Mathematics, 49, 143-156.
[2] Dales, H. G. (2000). Banach Algebras and Automatic Continuity,
Clarendon Press, Oxford.
[3] Forrest, B. E., & Marcoux, L. W. (2002). Weak amenability of triangular Banach algebras, Transactions of the American Mathematical Society, 354, 1435-1452. DOI: https://doi.org/10.1090/s0002-9947-01-02957-9
[4] Forrest, B. E., & Marcoux, L. W. (2004). Second order cohomology of triangular Banach algebras, Houston Journal of Mathematics, 30, 1157-1176.
[5] Gourdeau, F., Grønbæk, N., & White, M. C. (2011). Homology and cohomology of Rees semigroup algebras,
Studia Mathematica, 202, 105-121. http://doi.org/10.4064/sm202-2-1 
[6] Grønbæk, N. (1995). Morita equivalence for Banach algebras, Journal of Pure and Applied Algebra, 99, 183-219. DOI: https://doi.org/10.1016/0022-4049(95)91151-F
[7] İnceboz, H., & Arslan, B. (2018). The first module (σ; τ)-cohomology group of triangular Banach algebras of order three, Journal of Algebra and Its Applications, 17(12), 1850225. http://doi.org/10.1142/s0219498818502250
[8] Rieffel, M. A. (1967). Induced Banach representations of Banach algebras and locally compact groups, Journal of Functional Analysis, 1, 443-491. DOI: https://doi.org/10.1016/0022-1236(67)90012-2
[9] Runde, V. (2004). Lectures on Amenability, Springer, New York.
[10] Sahami, A. (2021). A note on Johnson pseudo-contractibility of triangular Banach algebras,
University Politehnica of Bucharest, Scientific Bulletin, Series A, 83(1), 37-40.
[11] Sands, A. D. (1973). Radicals and Morita contexts,
Journal of Algebra, 24, 335-345. DOI: https://doi.org/10.1016/0021-8693(73)90143-9
[12] Shariati, S. F., Pourabbas, A., & Sahami, A. (2018). On connes amenability of upper triangular matrix algebras, University Politehnica of Bucharest, Scientific Bulletin, Series A, 80(2), 145-152.