Scalable g-frames and piecewise scalable frames in Hilbert spaces

Document Type : Original Article

Authors

1 Faculty of Mathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave., Tehran 15618, Iran

2 Faculty of Mathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave., Tehran 15618, Iran,

Abstract

In this paper, we generalize the concept of scalability to g-frames, introduce scalable g-frames, obtain some characterizations for them, and demonstrate that scalability is stable under unitary operators and isomorphisms between two Hilbert spaces. In addition, we consider and study the piecewise scalability of frames in Hilbert spaces.  In particular, we present some necessary and sufficient conditions for the piecewise scalability of frames in H, and we will extend this concept to the tensor product of Hilbert spaces.

Keywords

Main Subjects


[1] Asgari, M.S., & Khosravi, A. (2005). Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl, 308, 541–553. DOI: https://doi.org/10.1016/j.jmaa.2004.11.036.
[2] Cahill, J.,
& Chen, X. (2013). A note on scalable frames. Proceedings of the 10th International Conference on Sampling Theory and Applications, 93–96.
[3] Casazza, P., Carli, L.,
& Tran, T. (2024). Piecewise scalable frames. Linear Algebra and its Applications, 694, 262–282. DOI: https://doi.org/10.1016/j.laa.2024.04.008.
[4] Casazza, P.,
& Chen, X. (2017). Frame scalings: A condition number approach. Linear Algebra and its Applications, 523, 152–168. DOI: https://doi.org/10.1016/j.laa.2017.02.020.
[5] Casazza, P.,
& Kutyniok, G. (2004). Frames of subspaces. Contemp. Math. Amer. Math. Soc, 345, 87–113. 
[6] Casazza, P.G., & Kutyniok, G. (2013). Finite Frames: Theory and Applications. Birkhauser, New York. DOI: https://doi.org/10.1007/978-0-8176-8373-3.
[7] Christensen, O. (2008). Frames and Bases.
Birkhauser, Boston. DOI: https://doi.org/10.1007/978-0-8176-4678-3.
[8] Daubechies, I., Grossmann, A.,
& Meyer, Y. (1986). Painless nonorthogonal expansions. J. Math. Phys, 27, 1271–1286. DOI: https://doi.org/10.1063/1.527388.
[9] Duffin, R.J.,
& Schaeffer, A.C. (1952). A class of nonharmonic Fourier series. Trans. Am. Math. Soc, 72, 341–366. DOI: https://doi.org/10.2307/1990760.
[10] Khosravi, A.,
& Farmani, M.R. (2024). Piecewise scalable frames in Hilbert spaces. International Journal of Wavelets, Multiresolution and Information Processing, 22(3), 2350052. DOI: https://doi.org/10.1142/S0219691323500522.
[11] Khosravi, A.,
& Khosravi, B. (2007). Frames and bases in tensor product of Hilbert spaces and Hilbert C-modules. Proc. Math. Sci, 117, 1–12. DOI: https://doi.org/10.1007/s12044-007-0001-5.
[12] Khosravi, A.,
& Mirzaee Azandaryani, M. (2014). Approximate duality of g-frames in Hilbert spaces. Acta Math. Sci, 34, 639–652. DOI: https://doi.org/10.1016/S0252-9602(14)60036-9.
[13] Kutyniok, G., Okoudjou, K.A.,
& Philipp, F. (2013). Scalable frames. Linear Algebra and its Applications, 438, 2225–2238. DOI: https://doi.org/10.1016/j.laa.2012.10.046.
[14] Sun, W. (2006). G-frames and g-Riesz bases.
J. Math. Anal. Appl, 322, 437–452. DOI: https://doi.org/10.1016/j.jmaa.2005.09.039.