Let (X,d) be a compact pointed metric space. In this paper, we investigate the condition on the underlying metric space (X,d) which implies that the little Lipschitz space on (X,d) is predual of L^1(\mu). Then, we conclude that the space of Holder functions on every compact pointed space, and for each 0<alpha<1 is not predual of L^1(\mu).
Golbaharan, A. (2024). Is the space of Holder functions predual of L^1?. Measure Algebras and Applications, 2(1), 85-91. doi: 10.22091/maa.2024.10469.1015
MLA
Azin Golbaharan. "Is the space of Holder functions predual of L^1?". Measure Algebras and Applications, 2, 1, 2024, 85-91. doi: 10.22091/maa.2024.10469.1015
HARVARD
Golbaharan, A. (2024). 'Is the space of Holder functions predual of L^1?', Measure Algebras and Applications, 2(1), pp. 85-91. doi: 10.22091/maa.2024.10469.1015
VANCOUVER
Golbaharan, A. Is the space of Holder functions predual of L^1?. Measure Algebras and Applications, 2024; 2(1): 85-91. doi: 10.22091/maa.2024.10469.1015