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1. Introduction

Let G be a finite simple undirected graph with the vertex set V (G) and the edge set E(G).
A subset C of V (G) is called a vertex cover of G if C ∩ e ̸= ∅ for any e ∈ E(G). A vertex cover
C of G is called minimal if there is no proper subset of C which is a vertex cover. A graph G

is said to be well-covered if all its minimal vertex covers have the same cardinality.
A simplicial complex ∆ on the vertex set V = {x1, . . . , xn} is a collection of subsets of V ,

with the properties: (1) {xi} ∈ ∆ for all i, and (2) if F ∈ ∆, then all subsets of F are also
in ∆ (including the empty set). An element F of ∆ is called a face of ∆, and maximal faces
of ∆ (with respect to inclusion) are called facets of ∆. We denote the simplicial complex ∆

with facets F1, . . . , Ft by ∆ = ⟨F1, . . . , Ft⟩. The dimension of a face F ∈ ∆ is defined by
dim(F ) = |F | − 1, and the dimension of ∆ is defined by dim(∆) = max{dim(F ) : F ∈ ∆}. A
simplicial complex is called pure if all its facets have the same cardinality. ∆ is called Cohen-
Macaulay (resp. Buchsbaum) over a field k if its Stanley-Reisner ring k[∆] is Cohen-Macaulay
(resp. Buchsbaum), and called Cohen-Macaulay (resp. Buchsbaum) if it has the same property
over any field k. Recall that, in general, the Cohen-Macaulay property of Stanley-Reisner rings
may depend on the characteristic of the base field; classical examples of this dependence are
triangulations of the projective plane (see [18, Section 6.3] for more details).

For a face F of ∆, the link of F is the simplicial complex

link∆(F ) = {G ∈ ∆ : G ∩ F = ∅ and G ∪ F ∈ ∆}.

By Reisner’s criterion (see e.g. [18, Theorem 6.3.12]), a simplicial complex ∆ is Cohen-Macaulay
over a field k, if and only if H̃i(link∆(F ); k) = 0 for all F ∈ ∆ and i < dim(link∆(F)).

The independence complex of a graph G, denoted by Ind(G), is the simplicial complex whose
faces correspond to independent (or stable) sets of G, where a subset F of V (G) is called an
independent set if any subsets of F with cardinality two do not belong to E(G). Since the
complement of a vertex cover is an independent set, it follows that a graph G is well-covered
if and only if Ind(G) is a pure simplicial complex. A graph G is called Cohen-Macaulay (resp.
Buchsbaum) if the independence complex Ind(G) is Cohen-Macaulay (resp. Buchsbaum).

Given an integer n ≥ 1 and a generating set S ⊆ {1, 2 . . . , ⌊n2 ⌋}, the circulant graph Cn(S) is
the graph with the vertex set V = {0, 1, . . . , n− 1} whose edge set is

E = {{i, j} : |i− j| ∈ S or n− |i− j| ∈ S}.

For S = {a1, . . . , at}, we abuse the notation and use Cn(a1, . . . , at) to denote Cn(S). Circulant
graphs belong to the family of cayley graphs and may be considered as a generalization of cycles
because Cn = Cn(1). In recent years, there have been a flurry of work identifying circulant
graphs which are also well-covered (see e.g. [1–3, 10, 11]). Since a well-covered graph has
the property that its independence complex is pure, and a pure complex can have some extra
combinatorial (e.g. vertex decomposable and shellable) or topological (e.g. Cohen-Macaulay
and Buchsbaum) structure, i.e., for a pure simplicial complex the following hierarchy is known:

vertex decomposability =⇒ shellability =⇒ Cohen-Macaulayness =⇒ Buchsbaum,

so it is natural to ask what more structures Ind(Cn(S)) entertains?
In 2016, Vander Meulen, Van Tuyl, and Watt [17] characterized Cohen-Macaulay (vertex

decomposable, shellable, or buchsbaum) circulant graphs of the form Cn(1, 2, . . . , d) and Cohen-
Macaulay cubic circulant graphs. Earl, Vander Meulen, and Van Tuyl [5] determined when
circulant graphs of the form Cn(d + 1, d + 2, . . . , ⌊n2 ⌋), Cn(1, . . . , î, . . . , ⌊n2 ⌋), and one-paired
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circulants have these structures. Also Vander Meulen and Van Tuyl [16] investigated when the
independence complex of the lexicographical product of two graphs is either vertex decomposable
or shellable. They also constructed an infinite family of graphs in which the independence
complex of each graph is shellable, but not vertex decomposable.

A finitely generated graded module M over a Noetherian graded ring R is said to satisfy the
Serre’s condition Sr (or simply say M is an Sr module) if

depth(Mp) ≥ min{r,dim(Mp)},

for all p ∈ Spec(R). Since M is Cohen-Macaulay if depth(Mp) = dim(Mp) for every p ∈ Spec(R),
it follows that M is Cohen-Macaulay if and only if it satisfies the Serre’s condition Sr for all
r ≥ 1. A simplicial complex ∆ is said to satisfy Serre’s condition Sr over a field k (or simply
say ∆ is an Sr complex) if the Stanley-Reisner ring k[∆] satisfies Serre’s condition Sr. Terai [14]
presented the following analogue of Reisner’s criterion for Sr simplicial complexes.

Theorem. A simplicial complex ∆ satisfies Serre’s condition Sr over a field k if and only
if for every face F ∈ ∆ (including the empty face), H̃i(link∆(F ); k) = 0 for all i < min{r −
1,dim(link∆(F))}.

There are some basic facts related to Sr simplicial complex. Every simplicial complex satisfies
S1. On the other hand, for r ≥ 2, simplicial complexes satisfying Sr (over a field k), are pure
([12, Lemma 2.6]) and strongly connected ([9, Corollary 2.4]). Recall that a pure simplicial
complex ∆ is called strongly connected if, for every pair of facets F and F ′ of ∆, there exists a
sequence of facets F = F0, F1, . . . , Ft = F ′ such that |Fk∩Fk+1| = |Fk|−1 for k = 0, 1, . . . , t−1.
We refer the reader to [6, 7, 12–15] for more details on the properties of Sr (and sequentially
Sr) simplicial complexes. Also as an immediate consequence of previous theorem, we have the
following corollary on S2 simplicial complexes.

Corollary. A simplicial complex ∆ satisfies Serre’s condition S2 over a field k if and only
if link∆(F ) is connected for every face F ∈ ∆ with dim(link∆(F)) ≥ 1. In particular, S2 prop-
erty of a simplicial complex does not depend on the characteristic of the field k.

Although Cohen-Macaulay (or Buchsbaum) property of Stanley-Reisner rings depends on the
base field and hence it is a topological property, S2 property does not depend on the base field
and S2 Stanley-Reisner rings can be characterized combinatorially.

We say a graph G satisfies the Serre’s condition Sn, or simply is an Sn graph, if its indepen-
dence complex Ind(G) satisfies this condition. As an immediate consequence, it follows that for
n ≥ 2, Sn graphs are well-covered. Haghighi, Yassemi, and Zaare-Nahandi [8] showed that S2

property for bipartite graphs and chordal graphs is equivalent to Cohen-Macaulayness. Recall
that a graph G is bipartite if there exists a partition V (G) = V

∪
V ′ with V

∩
V ′ = ∅ such that

each edge of G is of the form {i, j} with i ∈ V and j ∈ V ′, and G is called chordal if every cycle
of length at least four has a chord, where a chord is an edge joining two nonadjacent vertices of
the cycle.

In this paper, we characterize some families of circulant S2 graphs. In Section 2, we consider
S2 property of powers of cycles. More precisely, we show that if n ≥ 2d ≥ 2, then Cn(1, 2, . . . , d)

is S2 if and only if n ≤ 3d + 2 and n ̸= 2d + 2, or n = 4d + 3. Comparing this with [17,
Theorem 3.7] implies that Cn(1, 2, . . . , d) is Buchsbaum but not S2 if and only if n = 2d + 2.
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In Section 3, we consider circulants of the form Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋). We show that such a
graph satisfies serre’s condition S2 if and only if it is well-covered, i.e., n > 3d or n = 2d + 2.
This is equivalent to say that Cn(d+1, d+2, . . . , ⌊n2 ⌋) is Buchsbaum. In this case, we will show
that the only non-shellable (connected) link in ∆ = Ind(Cn(d + 1, d + 2, . . . , ⌊n2 ⌋)) is the link
of ∅ which is ∆ (except for d = 1), and the link of all non-empty faces of ∆ are shellable. In
Section 4, we investigate circulants of the form Cn(1, . . . , î, . . . , ⌊n2 ⌋). We show that circulant S2

graphs in this family are all Cohen-Macaulay. Using [5, Theorem 4.2] it is equivalent to say that
gcd(i, n) = 1. Since circulants in this family are all Buchsbaum (see [5, Theorem 4.2]), it follows
that circulant graphs of the form Cn(1, . . . , î, . . . , ⌊n2 ⌋) for which gcd(i, n) > 1, is an infinite
family of Buchsbaum graphs that are not S2. Section 5 is dedicated to one-paired circulant
graph, where we show that one-paired circulant graph C(n; a, b) is S2 if and only if n = ab, i.e.,
it is Cohen-Macaulay. Combining this together with [5, Corollary 5.10] implies that, if m > 1,
then C(mb; 1, b) is Buchsbaum but not S2. Finally, in Section 6 we identify which circulant
cubic graphs are S2. More precisely, we first show that the only non-S2 connected circulant
cubic graph is C6(1, 3). Combining this together with a result of Davis and Domke [4] enables
us to prove that the circulant cubic graph C2n(a, n) is S2 if and only if 2n

t = 3, 4, 5, 8, where
t = gcd(a, 2n). As the final result of this paper, we present infinite families of circulant graphs
which are S2 but not Buchsbaum, namely, circulants of the form C8t(t, 4t), C10t(2t, 5t), and
C10t(4t, 5t), where t > 1.

2. Circulants of the form Cn(1, 2, . . . , d)

In this section, we identify which circulants of the form Cn(1, 2, . . . , d) satisfy serre’s condition
S2. We need the following result of Brown and Hoshino.

Theorem 2.1. ([3, Theorem 4.1]) Let n and d be integers with n ≥ 2d ≥ 2. Then Cn(1, 2, . . . , d)

is well-covered if and only if n ≤ 3d+ 2 or n = 4d+ 3.

Using the above result we get the next characterization of circulant S2 graphs of the form
Cn(1, 2, . . . , d).

Theorem 2.2. Let n and d be integers with n ≥ 2d ≥ 2. Then G = Cn(1, 2, . . . , d) is S2 if and
only if n ≤ 3d+ 2 and n ̸= 2d+ 2, or n = 4d+ 3.

Proof. If G is S2, then G is well-covered and hence by Theorem 2.1 we get n ≤ 3d + 2 or
n = 4d+3. In the case where n = 2d+2, Ind(G) comprises of d+1 disjoint 1-faces (edges) and
hence G is not S2. Now we prove the converse. The idea is inspired by the proof of [17, Theorems
3.4 and 3.5]. By [3, Theorem 3.1] one has dim(Ind(G)) = ⌊ n

d+1⌋−1. If n = 2d or n = 2d+1, then
dim(Ind(G)) = 0 and G is Cohen-Macaulay. If 2d+ 3 ≤ n ≤ 3d+ 2, then dim(Ind(G)) = 1. In
this case for 0 ≤ i < j ≤ n−1, there exists the path i, i+d+2, i+1, i+d+3, i+2, . . . , j of 1-faces
(facets or edges) of Ind(G). In particular, Ind(G) is connected, and again it is Cohen-Macaulay.
Now assume n = 4d+ 3. One has dim(Ind(G)) = 2. First note that

0, d+ 1, 2d+ 2, 3d+ 3,1, d+ 2, 2d+ 3, 3d+ 4,2, . . . ,d-1, 2d, 3d+ 1, 4d+ 2,d, 2d+ 1, 3d+ 2,0

is a path (cycle) of 1-faces of Ind(G), i.e., Ind(G) is connected. To complete the proof, by
symmetry, it suffices to show that linkInd(G)(0) is connected. One can directly check that

{0, d+ 1, 2d+ 2}, {0, d+ 1, 2d+ 3}, . . . , {0, d+ 1, 3d+ 1}, {0, d+ 1, 3d+ 2},
{0, d+ 2, 2d+ 3}, {0, d+ 2, 2d+ 4}, . . . , {0, d+ 2, 3d+ 2},
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...
...

{0, 2d, 3d+ 1}, {0, 2d, 3d+ 2},
{0, 2d+ 1, 3d+ 2}

is a complete list of facets of Ind(G). From this description quickly follows that linkInd(G)(0) is
connected, and G is S2. □

As an immediate consequence, we get the following corollary which is the content of [8,
Proposition 1.6].

Corollary 2.3. The cyclic graph Cn of length n ≥ 3 is S2 if and only if n = 3, 5, or 7. In
particular, C7 is the only cyclic graph which is S2 but not Cohen-Macaulay.

Example 2.4. Vander Meulen et al. in [17, Theorems 3.4 and 3.5] showed that for n ≥ 2d ≥ 2

one has
(i) Cn(1, 2, . . . , d) is vertex decomposable/shellable/Cohen-Macaulay if and only if n ≤ 3d+

2 and n ̸= 2d+ 2.
(ii) Cn(1, 2, . . . , d) is Buchsbaum but not Cohen-Macaulay if and only if n = 2d + 2 or

n = 4d+ 3.
Comparing these with Theorem 2.2 yields that Cn(1, 2, . . . , d) is Buchsbaum but not S2 if and
only if n = 2d+ 2.

3. Circulants of the form Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋)

In this section we investigate S2 circulant graphs of the form Cn(d+1, d+2, . . . , ⌊n2 ⌋). To do
this, we need the following result of Brown and Hoshino on well-coveredness of these circulant
graphs.

Theorem 3.1. ([3, Theorem 4.2]) Let n and d be integers with n ≥ 2d + 2 and d ≥ 1. Then
Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋) is well-covered if and only if n > 3d or n = 2d+ 2.

Definition 3.2. A simplicial complex ∆ is called shellable if there is a linear order F1, . . . , Fs

of all the facets of ∆ such that for all 1 ≤ i < j ≤ s, there exist some v ∈ Fj \ Fi and some
l ∈ {1, . . . , j − 1} with Fj \ Fl = {v}. F1, . . . , Fs is called a shelling order of ∆.

We will make use the next two lemmas to prove Theorem 3.6 which is the main result of this
section.

Lemma 3.3. Let ∆ be a d-dimensional pure simplicial complex on the vertex set V = {x1, x2, . . . ,
xn} whose facets are given by

Fi = {xi, xi+1, . . . , xi+d} : i = 1, 2, . . . , n− d.

Then ∆ is pure shellable.

Proof. It is easy to see that F1, F2, . . . , Fn−d is the desired shelling order on the facets of ∆. □

Lemma 3.4. Let ∆ be a shellable simplicial complex and F1, F2, . . . , Fs a shelling order of ∆.
Also let F ∈ ∆ be such that F ⊆ Fi for all i = 1, 2, . . . , s. Then link∆(F) is shellable.

Proof. It is clear that link∆(F ) = ⟨F1 \ F, F2 \ F, . . . , Fs \ F ⟩, and that this order is the desired
shelling order of the facets of link∆(F ). □

We also need the following result on circulants of the form Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋).
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Theorem 3.5. ([5, Theorem 3.3]) Let n and d be integers with n ≥ 2d + 2 and d ≥ 1. The
following are equivalent:

(i) Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋) is Buchsbaum;
(ii) Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋) is well-covered;
(iii) n > 3d or n = 2d+ 2.

Furthermore, Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋) is vertex decomposable/shellable/Cohen-Macaulay if and
only if n = 2d+ 2 and d ≥ 1 or d = 1 and n ≥ 3.

Now we are ready to state and prove the main result of this section.

Theorem 3.6. Let n and d be integers with n ≥ 2d+2 and d ≥ 1. Then Cn(d+1, d+2, . . . , ⌊n2 ⌋)
is S2 if and only if n > 3d or n = 2d+ 2.

Proof. Let G = Cn(d+ 1, d+ 2, . . . , ⌊n2 ⌋) with n ≥ 2d+ 2 and d ≥ 1. If G is S2, then G is well-
covered and the result follows from Theorem 3.1. Now we prove the converse. If n = 2d+2, then
G = C2d+2(d+1) is the union of (d+1) disjoint edges. It follows that G is Cohen-Macaulay, and
hence it is S2. So assume n > 3d and d ≥ 1, and let ∆ = Ind(G). By the proof of [5, Theorem
3.3] one has Ind(G) = ⟨F0, . . . , Fn−1⟩, where Fi = {i, i + 1, . . . , i + d} for all i = 0, . . . , n − 1,
and the indices computed modulo n. If dim(link∆(F)) = d, then link∆(F ) = ∆, which is a
connected simplicial complex that is not shellable except for d = 1 (see Theorem 3.5) and there
is nothing to prove. So it is enough to show that link∆(F ) is connected for each face F ∈ ∆

with 0 < dim(link∆(F)) < d. We show that link∆(F ) is indeed shellable.
If d = 1, then the only case where dim(link∆(F)) > 0 is for F = ∅ which in this case link∆(F ) = ∆

is shellable. So suppose d > 1. Assume that dim(link∆(F)) = d− t where 0 < t < d. It follows
that |F | = t. Without loss of generality we may assume F ⊆ F0. Suppose F = {j1, j2, . . . , jt}
with 0 ≤ j1 < j2 < . . . < jt ≤ d. We claim that

Fn−d+jt , Fn−d+jt+1, . . . , Fj1−1, Fj1

is a complete list of the facets of Ind(G) that contain F , where the indices computed modulo n.
To see this, It suffices to notice that one has

Fn−d+jt = {n− d+ jt, n− d+ jt + 1, . . . , jt − 1, jt},
Fn−d+jt+1 = {n− d+ jt + 1, . . . , jt, jt + 1},
...
Fj1−1 = {j1 − 1, j1, . . . , j1 + d− 1},
Fj1 = {j1, j1 + 1, . . . , j1 + d}.

It follows from Lemma 3.3 that ∆′ = ⟨Fn−d+jt , Fn−d+jt+1, . . . , Fj1−1, Fj1⟩ is a pure shellable
simplicial complex on the vertex set V ′ = {n − d + jt, n − d + jt + 1, . . . , j1 + d} (Note that
|V ′| = 2d− (jt− j1)+1 ≤ 2d+1 < n, and that n−d+ jt, n−d+ jt+1, . . . , j1+d are all distinct
since j1 + d ≤ 2d and n− d+ jt > 2d+ jt ≥ 2d). Set

F ′
0 = Fn−d+jt \ F , F ′

1 = Fn−d+jt+1 \ F , . . . , F ′
d−(jt−j1)+1 = Fj1 \ F.

One can easily check that

link∆(F ) = ⟨F ′
0, F

′
1, . . . , F

′
d−(jt−j1)+1⟩.

Now it follows from Lemma 3.4 that link∆(F ) is shellable, as desired. □

Remark 3.7. Let G = Cn(d + 1, d + 2, . . . , ⌊n2 ⌋), where n > 3d and d > 1. Proof of Theorem
3.6 shows that if ∆ = Ind(G), then the only non-shellable (connected) link in ∆ is the link of ∅
which is ∆, and the link of all non-empty faces of ∆ are shellable.
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Corollary 3.8. Let n and d be integers with n ≥ 2d + 2 and d ≥ 1. For G = Cn(d + 1, d +

2, . . . , ⌊n2 ⌋) and ∆ = Ind(G), the following are equivalent:
(i) G is S2;
(ii) G is Buchsbaum;
(iii) G is well-covered;
(iv) n > 3d or n = 2d+ 2;
(v) ∆ is strongly connected and link∆(F) is (pure) shellable for all F ∈ ∆ with dim(link∆(F))

< d;
(vi) link∆(F) is strongly connected for all F ∈ ∆ with 0 < dim(link∆(F)) ≤ d.

Proof. The equivalence of (ii), (iii), and (iv) is Theorem 3.5. Also (i) and (iv) are equivalent by
Theorem 3.6. On the other hand, (v) and (vi) follow from the description of facets of ∆ and
link∆(F) in the proof of Theorem 3.6. Finally, if (v) or (vi) hold, then ∆ is pure and link∆(F)

is connected for all F ∈ ∆ with dim(link∆(F)) > 0, i.e., ∆ is S2. □

4. Circulants of the form Cn(1, . . . , î, . . . , ⌊n2 ⌋)

Moussi [11, Theorem 6.4] proved that circulants of the form Cn(1, . . . , î, . . . , ⌊n2 ⌋) are well-
covered. Earl, Vander Meulen, and Van Tuyl [5, Section 4] showed that these circulants are
always Buchsbaum, and they are Cohen-Macaulay if and only if gcd(i, n) = 1. In this section
we show that this condition is equivalent to S2 property.

Theorem 4.1. Let G = Cn(1, . . . , î, . . . , ⌊n2 ⌋). The following are equivalent:
(i) G is S2;
(ii) G is Cohen-Macaulay;
(iii) gcd(i, n) = 1.

Proof. The equivalence of (ii) and (iii) is [5, Theorem 4.2]. Also (ii) =⇒ (i) always holds. Now
we show that (i) =⇒ (ii). By [11, Theorem 6.4] one has dim(Ind(G)) = 1 except if i = n

3 , in
which case, dim(Ind(G)) = 2. If i ̸= n

3 , then by the proof of [5, Theorem 4.2] Ind(G) is connected
and hence it is Cohen-Macaulay. Now assume i = n

3 . Again by the proof of [5, Theorem 4.2] we
have

Ind(G) = ⟨{0, i, 2i}, {1, i+ 1, 2i+ 1}, . . . , {i− 1, 2i− 1, 3i− 1}⟩.

Since G is S2, Ind(G) is connected. This yields that i = 1, n = 3, and Ind(G) = ⟨{0, i, 2i}⟩, i.e.,
G is Cohen-Macaulay. □

Remark 4.2. While S2 property for the family Cn(d+1, d+2, . . . , ⌊n2 ⌋) is equivalent to Buchs-
baumness (and hence there exist circulants in this family that are S2 but not Cohen-Macaulay
(see Theorem 3.5)), but S2 graphs of the form Cn(1, . . . , î, . . . , ⌊n2 ⌋) are those which are Cohen-
Macaulay.

Example 4.3. It follows form [5, Theorem 4.2] that circulant graphs of the form Cn(1, . . . , î, . . . ,

⌊n2 ⌋) for which gcd(i, n) ̸= 1, is an infinite family of Buchsbaum graphs that are not S2.

5. One-Paired Circulants

In this section, we consider S2 property of one-paired circulant graphs introduced by Boros,
Gurvich, and Milanič [1] as a subfamily of CIS circulant graphs. One-paired circulant graphs
are defined as follows.
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Definition 5.1. Let (a, b) a pair of positive integers such that ab|n and let

S = {d ∈ {1, . . . , ⌊n
2
⌋} : a|d and ab ∤ d}.

The circulant graph Cn(S) is called one-paired and will be denoted by C(n; a, b).

Earl, Vander Meulen, and Van Tuyl characterized the structure of one-paired circulant graphs,
and using that, they identified when a one-paired circulant graph is Cohen-Macaulay or Buchs-
baum. More precisely, they showed the followings.

Theorem 5.2. ([5, Theorem 5.4]) Let G = C(n; a, b) be a one-paired circulant. Then

G =
a∪

i=1

 b∨
j=1

K n
ab

 .

Corollary 5.3. ([5, Corollary 5.10]) Let G be the one-paired circulant graph G = C(n; a, b).
Then

(i) G is vertex decomposable/shellable/Cohen-Macaulay if and only if n = ab.
(ii) G is Buchsbaum but not Cohen-Macaulay if and only if a = 1 and ab < n.
(iii) Ind(G) is pure but not Buchsbaum if and only if 1 < a and ab < n.

Using the above results we show that one-paired circulant S2 graphs are Cohen-Macaulay.

Theorem 5.4. Let G be the one-paired circulant graph G = C(n; a, b). Then G is S2 if and
only if n = ab, i.e., G is Cohen-Macaulay.

Proof. By Theorem 5.2 one has

G =

a∪
i=1

 b∨
j=1

K n
ab

 .

It follows that
Ind(G) = Ind(G1) ∗ Ind(G2) ∗ · · · ∗ Ind(Ga),

where ∗ denotes the join of complexes, and Gi =
∨b

j=1K n
ab

for all i = 1, . . . , a. Therefore each
Ind(Gi) is a pure complex consists of disjoint union of b simplices with cardinality k = n

ab . Thus
we may assume

Ind(G) = ⟨F11, . . . , F1b⟩ ∗ ⟨F21, . . . , F2b⟩ ∗ · · · ∗ ⟨Fa1, . . . , Fab⟩,

where |Fij | = k and Fij ∩ Fkl = ∅ for all 1 ≤ i, k ≤ a and 1 ≤ j, l ≤ b.
If k > 1, then F = F11∪F21∪ . . .∪F(a−1)1 is a face of Ind(G) whose link is link∆(F) = Ind(Ga) =

⟨Fa1, . . . ,Fab⟩. This yields that dim(link∆(F)) = k − 1 > 0 and link∆(F) is disconnected since
b > 1. Thus, if G is S2, then k = 1, i.e., n = ab. Corollary 5.3.(i) now completes the proof. □

As an immediate consequence, we get the following which is the S2 analogue of [5, Theorem
5.9].

Corollary 5.5. Let G = C(n; 1, b) = C(mb; 1, b) be a one-paired circulant graph. Then G is S2

if and only if m = 1, i.e., G is Cohen-Macaulay.

Example 5.6. It follows from Corollaries 5.5 and 5.3.(ii) that, if m > 1, then C(mb; 1, b) is
Buchsbaum but not S2.
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6. Circulant Cubic Graphs

A graph in which every vertex has degree 3, is called a cubic graph. It is easy to see that a
circulant cubic graph is of the form C2n(a, n) with 1 ≤ a < n. Brown and Hoshino [3, Theorem
4.3] characterized which connected circulant cubic graphs are well-covered. They showed that
a connected circulant cubic graph G is well-covered if and only if it is isomorphic to one of the
following graphs: C4(1, 2), C6(1, 3), C6(2, 3), C8(1, 4), or C10(2, 5) (see, [3, Theorem 4.3]).

On the other hand, Vander Meulen et al. in [17, Theorem 5.2] proved that a connected
circulant cubic graph G is Cohen-Macaulay if and only if it is isomorphic to C4(1, 2) or C6(2, 3).
In the next Proposition we examine which connected circulant cubic graphs are S2.

Proposition 6.1. The only non-S2 connected circulant cubic graph is C6(1, 3).

Proof. We know that C4(1, 2) and C6(2, 3) are Cohen-Macaulay. If G = C8(1, 4), then Ind(G) =

⟨025, 035, 036, 136, 147, 247, 257⟩. Thus Ind(G) and linkInd(G)(0) are connected, i.e., G is S2. If
G = C10(2, 5), then

Ind(G) = ⟨0147, 0347, 0367, 0369, 1258, 1458, 1478, 2369, 2569, 2589⟩.

Again Ind(G) and linkInd(G)(0) are connected. One can easily check that linkInd(G)(F ) is con-
nected for each F ∈ Ind(G) with |F | = 1. Therefore C10(2, 5) is also S2. Finally, note that the
independence complex of C6(1, 3) is a disconnected two dimensional simplicial complex, and so
it is not S2. □

Example 6.2. Earl, Vander Meulen, and Van Tuyl showed that all connected circulant cubic
graphs are Buchsbaum (see [5, Table 1]). By Proposition 6.1, C6(1, 3) is the only connected
circulant cubic Buchsbaum graph which is not S2.

We need some preliminaries to generalize Proposition 6.1 to all circulant cubic graphs.

Proposition 6.3. Let ∆1 and ∆2 be simplicial complexes with disjoint vertex sets. Then
∆ = ∆1 ∗∆2 is S2 if and only if ∆1 and ∆2 are S2.

Proof. First note that if ∆1 and ∆2 are nonempty simplicial complexes, then ∆1∗∆2 is connected.
On the other hand, it is not difficult to check that for F1 ∈ ∆1 and F2 ∈ ∆2 one has link∆(F1 ∪
F2) = link∆1(F1) ∗ link∆2(F2).
Now assume ∆ is S2, and F1 ∈ ∆1 is such that dim(link∆1(F1)) > 0. Then for a facet F2 ∈ ∆2

one has F = F1∪F2 ∈ ∆ and link∆(F ) = link∆1(F1)∗link∆2(F2) = link∆1(F1)∗{∅} = link∆1(F1).
Since ∆ is S2, link∆(F ) is connected, and so is link∆1(F1), i.e., ∆1 is S2. Similarly ∆2 is S2.
Conversely, assume ∆1 and ∆2 are S2. Also assume F ∈ ∆ is such that dim(link∆(F)) > 0.
If F ∈ ∆1 (similarly for F ∈ ∆2), then link∆(F ) = link∆1(F ) ∗ link∆2(∅) = link∆1(F ) ∗ ∆2.
Now if link∆1(F ) ̸= ∅, then link∆1(F ) ∗ ∆2 is always connected, and if link∆1(F ) = ∅, then
link∆(F ) = ∆2 which is connected because it is S2 (with positive dimension) and we are done.
Now assume F = F1 ∪ F2 where F1 ∈ ∆1 and F2 ∈ ∆2, and that F1 ̸= ∅ and F2 ̸= ∅. Thus
link∆(F ) = link∆1(F1) ∗ link∆2(F2). If link∆1(F1) and link∆2(F2) are nonempty, then link∆(F )

is connected. If link∆1(F1) = ∅, then link∆(F ) = link∆2(F2) which is connected because ∆2 is
S2. □

Corollary 6.4. Let G be a simple graph which is a disjoint union of two graphs H and K.
Then G is S2 if and only if H and K are S2.

Proof. It is enough to notice that Ind(G) = Ind(H) ∗ Ind(K), and apply Lemma 6.3. □
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We also need the following result of Davis and Domke [4] to extend Proposition 6.1 to all
circulant cubic graphs.

Theorem 6.5. Let G = C2n(a, n) with 1 ≤ a < n, and let t = gcd(a, 2n).
(i) If 2n

t is even, then G is isomorphic to t copies of C 2n
t
(1, nt ).

(ii) If 2n
t is odd, then G is isomorphic to t

2 copies of C 4n
t
(2, 2nt ).

Now we bring the main result of this section.

Theorem 6.6. Let G = C2n(a, n) be a circulant cubic graph and let t = gcd(a, 2n). Then G is
S2 if and only if 2n

t = 3, 4, 5, 8.

Proof. First assume 2n
t is even. By Theorem 6.5 and Corollary 6.4, G is S2 if and only if

2n
t = 4, 8. Now assume 2n

t is odd. Again by Theorem 6.5 and Corollary 6.4, G is S2 if and only
if 4n

t = 6, 10, or equivalently, 2n
t = 3, 5. □

Example 6.7. G = C16(2, 8) is an example of a circulant graph which is S2 but not Buchsbaum.
Indeed, C16(2, 8) is isomorphic to 2 copies of C8(1, 4), and hence it is S2, but as it is shown in
[17, Table 1], it is not Buchsbaum.

As the final result of this paper, we present infinite families of circulant graphs which are S2

but not Buchsbaum. To do this, we need the following lemma.

Lemma 6.8. ([5, Lemma 2.5]) Let G and H be two disjoint graphs that are both Buchsbaum,
but not Cohen-Macaulay. Then G ∪H is not Buchsbaum.

Corollary 6.9. For t > 1, the followings are infinite families of circulant graphs which are S2

but not Buchsbaum:
(i) C8t(t, 4t).
(ii) C10t(2t, 5t) and C10t(4t, 5t).

Proof. (i) By Theorem 6.5.(i), C8t(t, 4t) is isomorphic to t > 1 copies of C8(1, 4), and hence it
is S2. On the other hand, C8(1, 4) is Buchsbaum but not Cohen-Macaulay. Thus Lemma 6.8
implies that C8t(t, 4t) is not Buchsbaum.
(ii) By Theorem 6.5.(ii), C10t(2t, 5t) and C10t(4t, 5t) are isomorphic to t > 1 copies of C10(2, 5),
and hence they are S2. Again, C10(2, 5) is Buchsbaum but not Cohen-Macaulay. Now Lemma
6.8 yields that C8t(t, 4t) is not Buchsbaum. □
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