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1. Introduction

Let G be a finite simple undirected graph with the vertex set V(G) and the edge set E(G).
A subset C of V(G) is called a vertex cover of G if C'Ne # () for any e € E(G). A vertex cover
C of G is called minimal if there is no proper subset of C' which is a vertex cover. A graph G
is said to be well-covered if all its minimal vertex covers have the same cardinality.

A simplicial complex A on the vertex set V' = {z1,...,2,} is a collection of subsets of V,
with the properties: (1) {x;} € A for all 4, and (2) if FF € A, then all subsets of F' are also
in A (including the empty set). An element F' of A is called a face of A, and maximal faces
of A (with respect to inclusion) are called facets of A. We denote the simplicial complex A
with facets Fi,...,Fy by A = (Fy,...,F). The dimension of a face F' € A is defined by
dim(F') = |F| — 1, and the dimension of A is defined by dim(A) = max{dim(F) : F € A}. A
simplicial complex is called pure if all its facets have the same cardinality. A is called Cohen-
Macaulay (resp. Buchsbaum) over a field k if its Stanley-Reisner ring k[A] is Cohen-Macaulay
(resp. Buchsbaum), and called Cohen-Macaulay (resp. Buchsbaum) if it has the same property
over any field k. Recall that, in general, the Cohen-Macaulay property of Stanley-Reisner rings
may depend on the characteristic of the base field; classical examples of this dependence are
triangulations of the projective plane (see [18, Section 6.3] for more details).

For a face F' of A, the link of F' is the simplicial complex

linka(F)={GeA : GNF=0and GUF € A}.

By Reisner’s criterion (see e.g. [18, Theorem 6.3.12]), a simplicial complex A is Cohen-Macaulay
over a field k, if and only if H;(linka (F);k) = 0 for all F' € A and i < dim(linka (F)).

The independence complex of a graph G, denoted by Ind(G), is the simplicial complex whose
faces correspond to independent (or stable) sets of G, where a subset F' of V(G) is called an
independent set if any subsets of F' with cardinality two do not belong to E(G). Since the
complement of a vertex cover is an independent set, it follows that a graph G is well-covered
if and only if Ind(G) is a pure simplicial complex. A graph G is called Cohen-Macaulay (resp.
Buchsbaum) if the independence complex Ind(G) is Cohen-Macaulay (resp. Buchsbaum).

Given an integer n > 1 and a generating set S C {1,2..., |5 |}, the circulant graph C,(S) is
the graph with the vertex set V' ={0,1,...,n — 1} whose edge set is

E={{ij} : li—jleSorn—|i—jl €S}

For S ={ai,...,a:}, we abuse the notation and use Cy(a1,...,a:) to denote Cp(S). Circulant
graphs belong to the family of cayley graphs and may be considered as a generalization of cycles
because C,, = C,(1). In recent years, there have been a flurry of work identifying circulant
graphs which are also well-covered (see e.g. [1-3, 10, 11]). Since a well-covered graph has
the property that its independence complex is pure, and a pure complex can have some extra
combinatorial (e.g. vertex decomposable and shellable) or topological (e.g. Cohen-Macaulay
and Buchsbaum) structure, i.e., for a pure simplicial complex the following hierarchy is known:

vertex decomposability = shellability = Cohen-Macaulayness = Buchsbaum,

so it is natural to ask what more structures Ind(C,,(5)) entertains?

In 2016, Vander Meulen, Van Tuyl, and Watt [17] characterized Cohen-Macaulay (vertex
decomposable, shellable, or buchsbaum) circulant graphs of the form C,(1,2,...,d) and Cohen-
Macaulay cubic circulant graphs. Earl, Vander Meulen, and Van Tuyl [5] determined when

circulant graphs of the form Cp(d + 1,d + 2,...,[5]), Cn(1,... A |5]), and one-paired
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circulants have these structures. Also Vander Meulen and Van Tuyl [16] investigated when the
independence complex of the lexicographical product of two graphs is either vertex decomposable
or shellable. They also constructed an infinite family of graphs in which the independence
complex of each graph is shellable, but not vertex decomposable.

A finitely generated graded module M over a Noetherian graded ring R is said to satisfy the
Serre’s condition S, (or simply say M is an S, module) if

depth(M,) > min{r, dim(M,)},

for all p € Spec(R). Since M is Cohen-Macaulay if depth(M,) = dim(M),) for every p € Spec(R),
it follows that M is Cohen-Macaulay if and only if it satisfies the Serre’s condition S5, for all
r > 1. A simplicial complex A is said to satisfy Serre’s condition S, over a field k& (or simply
say A is an S, complex) if the Stanley-Reisner ring k[A] satisfies Serre’s condition S,. Terai [14]

presented the following analogue of Reisner’s criterion for S, simplicial complexes.

Theorem. A simplicial complexr A satisfies Serre’s condition S, over a field k if and only
if for every face F € A (including the empty face), H;(linka(F);k) = 0 for all i < min{r —
1,dim(linka (F))}.

There are some basic facts related to S, simplicial complex. Every simplicial complex satisfies
Si. On the other hand, for r > 2, simplicial complexes satisfying S, (over a field k), are pure
([12, Lemma 2.6]) and strongly connected ([9, Corollary 2.4]). Recall that a pure simplicial
complex A is called strongly connected if, for every pair of facets F' and F’ of A, there exists a
sequence of facets F' = Fy, Fi, ..., F; = F' such that |FN Fy1| = |Fx|—1for k=0,1,...,t—1.
We refer the reader to [0, 7, 12—-15] for more details on the properties of S, (and sequentially
S,) simplicial complexes. Also as an immediate consequence of previous theorem, we have the
following corollary on Sy simplicial complexes.

Corollary. A simplicial complex A satisfies Serre’s condition So over a field k if and only
if linka (F') is connected for every face F € A with dim(linka (F)) > 1. In particular, Sa prop-
erty of a simplicial complex does not depend on the characteristic of the field k.

Although Cohen-Macaulay (or Buchsbaum) property of Stanley-Reisner rings depends on the
base field and hence it is a topological property, Sy property does not depend on the base field
and So Stanley-Reisner rings can be characterized combinatorially.

We say a graph G satisfies the Serre’s condition S,,, or simply is an S,, graph, if its indepen-
dence complex Ind(G) satisfies this condition. As an immediate consequence, it follows that for
n > 2, S, graphs are well-covered. Haghighi, Yassemi, and Zaare-Nahandi [¢] showed that S
property for bipartite graphs and chordal graphs is equivalent to Cohen-Macaulayness. Recall
that a graph G is bipartite if there exists a partition V(G) =V JV’ with V' (V' = 0 such that
each edge of G is of the form {i,j} with ¢ € V and j € V', and G is called chordal if every cycle
of length at least four has a chord, where a chord is an edge joining two nonadjacent vertices of
the cycle.

In this paper, we characterize some families of circulant Ss graphs. In Section 2, we consider
Sy property of powers of cycles. More precisely, we show that if n > 2d > 2, then C,,(1,2,...,d)
is Sg if and only if n < 3d 4+ 2 and n # 2d + 2, or n = 4d + 3. Comparing this with [17,

Theorem 3.7] implies that Cy(1,2,...,d) is Buchsbaum but not Sy if and only if n = 2d + 2.
115



Measure Algebras and Applications, Year. 2025, Vol. 3, No. 1, pp. 113-123

In Section 3, we consider circulants of the form Cp(d+1,d +2,...,[5]). We show that such a
graph satisfies serre’s condition Sy if and only if it is well-covered, i.e., n > 3d or n = 2d + 2.
This is equivalent to say that Cy(d+1,d+2,...,|5]) is Buchsbaum. In this case, we will show
that the only non-shellable (connected) link in A = Ind(Cp(d +1,d 4 2,...,|5])) is the link
of () which is A (except for d = 1), and the link of all non-empty faces of A are shellable. In

Section 4, we investigate circulants of the form C,,(1,...,1,..., |5]). We show that circulant S
graphs in this family are all Cohen-Macaulay. Using [5, Theorem 4.2] it is equivalent to say that
ged(i,m) = 1. Since circulants in this family are all Buchsbaum (see [5, Theorem 4.2]), it follows
that circulant graphs of the form Cy(1,...,7,..., |5]) for which ged(i,n) > 1, is an infinite
family of Buchsbaum graphs that are not S2. Section 5 is dedicated to one-paired circulant
graph, where we show that one-paired circulant graph C(n;a,b) is Sy if and only if n = ab, i.e.,
it is Cohen-Macaulay. Combining this together with [5, Corollary 5.10] implies that, if m > 1,
then C(mb;1,b) is Buchsbaum but not Ss. Finally, in Section 6 we identify which circulant
cubic graphs are S5. More precisely, we first show that the only non-S5 connected circulant
cubic graph is Cg(1,3). Combining this together with a result of Davis and Domke [1] enables
us to prove that the circulant cubic graph Cs,(a,n) is Sy if and only if 27” = 3,4,5,8, where
t = ged(a,2n). As the final result of this paper, we present infinite families of circulant graphs
which are Sy but not Buchsbaum, namely, circulants of the form Cg(t,4t), Cio:(2t,5t), and

Chot(4t,5t), where ¢t > 1.

2. Circulants of the form C,(1,2,...,d)

In this section, we identify which circulants of the form C),(1,2,. .., d) satisfy serre’s condition
So. We need the following result of Brown and Hoshino.

Theorem 2.1. ([3, Theorem 4.1]) Let n and d be integers with n > 2d > 2. Then Cy,(1,2,...,d)
1s well-covered if and only if n < 3d+ 2 orn =4d + 3.

Using the above result we get the next characterization of circulant Sy graphs of the form
Cn(1,2,...,4d).

Theorem 2.2. Let n and d be integers with n > 2d > 2. Then G = Cy(1,2,...,d) is So if and
only ifn <3d+2 andn # 2d+ 2, orn =4d + 3.

Proof. If G is So, then G is well-covered and hence by Theorem 2.1 we get n < 3d + 2 or
n = 4d + 3. In the case where n = 2d + 2, Ind(G) comprises of d 4+ 1 disjoint 1-faces (edges) and
hence G is not Se. Now we prove the converse. The idea is inspired by the proof of [1 7, Theorems
3.4 and 3.5]. By [3, Theorem 3.1] one has dim(Ind(G)) = | 7| —1. If n = 2d or n = 2d+1, then
dim(Ind(G)) = 0 and G is Cohen-Macaulay. If 2d + 3 < n < 3d + 2, then dim(Ind(G)) = 1. In
this case for 0 < ¢ < j < n—1, there exists the path i,i+d+2,i+1,i+d+3,i+2, ..., of 1-faces
(facets or edges) of Ind(G). In particular, Ind(G) is connected, and again it is Cohen-Macaulay.
Now assume n = 4d + 3. One has dim(Ind(G)) = 2. First note that

0,d+1,2d+2,3d+3,1,d+2,2d+3,3d +4,2,...,d-1,2d,3d + 1,4d + 2, d,2d + 1,3d + 2,0

is a path (cycle) of 1-faces of Ind(G), i.e., Ind(G) is connected. To complete the proof, by
symmetry, it suffices to show that linkp,q(q) (0) is connected. One can directly check that

{0,d+1,2d+2}, {0,d+1,2d+3}, ..., {0,d+1,3d+1}, {0,d+1,3d+2},

{0,d+2,2d + 3}, {0,d+2,2d+4}, ..., {0,d+2,3d+ 2},
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{0,2d,3d + 1}, {0,2d,3d + 2},

{0,2d +1,3d + 2}
is a complete list of facets of Ind(G). From this description quickly follows that linkp,qq)(0) is
connected, and G is Ss. O

As an immediate consequence, we get the following corollary which is the content of [,
Proposition 1.6].

Corollary 2.3. The cyclic graph C,, of length n > 3 is Sy if and only if n = 3,5, or 7. In
particular, Cy is the only cyclic graph which is So but not Cohen-Macaulay.

Example 2.4. Vander Meulen et al. in [17, Theorems 3.4 and 3.5] showed that for n > 2d > 2

one has

(i) Cn(1,2,...,d) is vertex decomposable/shellable/Cohen-Macaulay if and only if n < 3d+
2 and n # 2d 4 2.

(ii) Cn(1,2,...,d) is Buchsbaum but not Cohen-Macaulay if and only if n = 2d + 2 or
n = 4d + 3.

Comparing these with Theorem 2.2 yields that C,(1,2,...,d) is Buchsbaum but not Sy if and
only if n = 2d + 2.
3. Circulants of the form C,(d +1,d+2,...,[5])

In this section we investigate S circulant graphs of the form Cy(d+1,d+2,...,|5]). To do
this, we need the following result of Brown and Hoshino on well-coveredness of these circulant
graphs.

Theorem 3.1. ([3, Theorem 4.2]) Let n and d be integers with n > 2d + 2 and d > 1. Then
Cn(d+1,d+2,...,[5]) is well-covered if and only if n > 3d or n = 2d + 2.

Definition 3.2. A simplicial complex A is called shellable if there is a linear order Fi,..., F
of all the facets of A such that for all 1 < i < j < s, there exist some v € F; \ F; and some
le{l,...,5—1} with F; \ F; = {v}. F1,..., Fs is called a shelling order of A.

We will make use the next two lemmas to prove Theorem 3.6 which is the main result of this

section.

Lemma 3.3. Let A be a d-dimensional pure simplicial complex on the vertex set V. = {x1,xa,...,
xn} whose facets are given by

Fi={xi,zip1,...,xipa} : 1=1,2,...,n—d.
Then A is pure shellable.

Proof. 1t is easy to see that Fy, Fy,. .., F,_g4 is the desired shelling order on the facets of A. O

Lemma 3.4. Let A be a shellable simplicial complex and Fy, Fy, ..., Fs a shelling order of A.
Also let F' € A be such that FF C F; for alli=1,2,...,s. Then linka(F) is shellable.

Proof. 1t is clear that linka(F) = (F1 \ F, F» \ F,...,Fs \ F), and that this order is the desired
shelling order of the facets of linka (F). O

We also need the following result on circulants of the form C,,(d +1,d+2,...,[5]).
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Theorem 3.5. ([0, Theorem 3.3|) Let n and d be integers with n > 2d + 2 and d > 1. The
following are equivalent:
(i) Cu(d+1,d+2,...,|5]) is Buchsbaum;
(i) Cn(d+1,d+2,...,|5]) is well-covered;
(iii) n > 3d orn =2d+ 2.
Furthermore, Cp(d+1,d+2,...,[5]) is vertex decomposable/shellable/Cohen-Macaulay if and
onlyifn=2d+2 andd>1ord=1 andn > 3.

Now we are ready to state and prove the main result of this section.

Theorem 3.6. Letn and d be integers withn > 2d+2 and d > 1. Then Cp(d+1,d+2,...,[5])
is So if and only if n > 3d orn = 2d+ 2.

Proof. Let G = Cp(d+1,d+2,...,|5]) withn >2d+2and d > 1. If G is Sy, then G is well-
covered and the result follows from Theorem 3.1. Now we prove the converse. If n = 2d+2, then
G = Cy442(d+1) is the union of (d+1) disjoint edges. It follows that G is Cohen-Macaulay, and
hence it is So. So assume n > 3d and d > 1, and let A = Ind(G). By the proof of [5, Theorem
3.3] one has Ind(G) = (Fy, ..., Fn_1), where F; = {i,i+1,...,i+d} forall i =0,...,n — 1,
and the indices computed modulo n. If dim(linka(F)) = d, then linka(F) = A, which is a
connected simplicial complex that is not shellable except for d = 1 (see Theorem 3.5) and there
is nothing to prove. So it is enough to show that linka (F) is connected for each face F' € A
with 0 < dim(linka (F)) < d. We show that linka (F') is indeed shellable.

If d = 1, then the only case where dim(linka (F)) > 0 is for F' = () which in this case linka (F) = A
is shellable. So suppose d > 1. Assume that dim(linka(F)) =d —t where 0 < ¢ < d. It follows
that |F| = t. Without loss of generality we may assume F' C Fy. Suppose F' = {ji,j2,...,jt}
with 0 < j1 < jo < ... < j <d. We claim that

Fo—dtjis Fn—dtj+1s - Fji—1, Fj

is a complete list of the facets of Ind(G) that contain F', where the indices computed modulo n.
To see this, It suffices to notice that one has
Fo—agvj,={n—d+jun—d+j+1,...,5:— 1,4},
Fogrjmi={n—d+j+1,..., 5, 5s + 1},

Fia={ih—-4Lj,....50+d—1},

Fj, ={jn+1,....,51+d}.
It follows from Lemma 3.3 that A" = (F,_a4j,, Fnd+jo+1,-- -, Fj—1, Fj,) is a pure shellable
simplicial complex on the vertex set V! = {n —d+ jy,n —d+ jir + 1,...,71 + d} (Note that
V' =2d—(jy—j1)+1 <2d+1 < n, and that n —d+ji,n—d+j+1,...,j1 +d are all distinct
since j; +d < 2d and n —d + j; > 2d + j; > 2d). Set

Fy=Fpgrjy \F , F{=Foarjri\F . ..., Fyi i =F\F
One can easily check that
hnkA(F) = <.FB7 Fll, ey F(/i_(jt_jl)+1>'
Now it follows from Lemma 3.4 that linka (F') is shellable, as desired. O

Remark 3.7. Let G = Cp(d +1,d+2,...,|5]), where n > 3d and d > 1. Proof of Theorem

3.6 shows that if A = Ind(G), then the only non-shellable (connected) link in A is the link of 0

which is A, and the link of all non-empty faces of A are shellable.
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Corollary 3.8. Let n and d be integers with n > 2d +2 and d > 1. For G = C,(d + 1,d +
2,...,15])) and A = Ind(G), the following are equivalent:

(i G is SQ,'

(ii) G is Buchsbaum;

(iv) n>3d orn=2d+2;

(v) A is strongly connected and linka (F) is (pure) shellable for all F' € A with dim(linka (F))
<d;

(vi) linka (F) is strongly connected for all F € A with 0 < dim(linka (F)) < d.

)
)
(iii) G is well-covered;
)
)

Proof. The equivalence of (ii), (iii), and (iv) is Theorem 3.5. Also (i) and (iv) are equivalent by
Theorem 3.6. On the other hand, (v) and (vi) follow from the description of facets of A and
linka (F) in the proof of Theorem 3.6. Finally, if (v) or (vi) hold, then A is pure and linka (F)
is connected for all F' € A with dim(linka(F)) > 0, i.e., A is So. O

4. Circulants of the form C,(1,... s 15])

Moussi [I1, Theorem 6.4] proved that circulants of the form Cy(1,...,7,...,|5]) are well-
covered. Earl, Vander Meulen, and Van Tuyl [5, Section 4] showed that these circulants are
always Buchsbaum, and they are Cohen-Macaulay if and only if ged(i,n) = 1. In this section
we show that this condition is equivalent to Sy property.

Theorem 4.1. Let G = Cy(1,.. ., b, |5]). The following are equivalent:
(i) G is SQ,'
(ii) G is Cohen-Macaulay;
(iii) ged(i,n) = 1.

Proof. The equivalence of (ii) and (iii) is [5, Theorem 4.2]. Also (ii) = (i) always holds. Now
we show that (i) = (ii). By [/ |, Theorem 6.4] one has dim(Ind(G)) = 1 except if i = %, in
which case, dim(Ind(G)) = 2. If i # %, then by the proof of [5, Theorem 4.2] Ind(G) is connected
and hence it is Cohen-Macaulay. Now assume i = %. Again by the proof of [5, Theorem 4.2] we

have
Ind(G) = ({0,4,2:¢},{1,i + 1,20 + 1},...,{i — 1,20 — 1,3i — 1}).

Since G is Sg, Ind(G) is connected. This yields that i = 1,n = 3, and Ind(G) = ({0, 7, 2i}), i.e.,
G is Cohen-Macaulay. O

Remark 4.2. While Sy property for the family Cp,(d+1,d+2,...,[5]) is equivalent to Buchs-
baumness (and hence there exist circulants in this family that are Se but not Cohen-Macaulay
(see Theorem 3.5)), but Sy graphs of the form Cy(1,...,4,..., |5 ]) are those which are Cohen-
Macaulay.

Example 4.3. It follows form [, Theorem 4.2] that circulant graphs of the form Cy,(1,..., 0. ..,
|5]) for which ged(i,n) # 1, is an infinite family of Buchsbaum graphs that are not S.

5. One-Paired Circulants

In this section, we consider Sy property of one-paired circulant graphs introduced by Boros,
Gurvich, and Milani¢ [!] as a subfamily of CIS circulant graphs. One-paired circulant graphs

are defined as follows.
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Definition 5.1. Let (a,b) a pair of positive integers such that ab|n and let
S={de {1,...,@}: ald and abt d}.
The circulant graph C,(S) is called one-paired and will be denoted by C(n;a,b).

Earl, Vander Meulen, and Van Tuyl characterized the structure of one-paired circulant graphs,
and using that, they identified when a one-paired circulant graph is Cohen-Macaulay or Buchs-
baum. More precisely, they showed the followings.

Theorem 5.2. ([5, Theorem 5.4]) Let G = C(n;a,b) be a one-paired circulant. Then

Corollary 5.3. ([5, Corollary 5.10]) Let G be the one-paired circulant graph G = C(n;a,b).
Then

(i) G is vertex decomposable/shellable/Cohen-Macaulay if and only if n = ab.
(ii) G is Buchsbaum but not Cohen-Macaulay if and only if a = 1 and ab < n.
(iii) Ind(G) is pure but not Buchsbaum if and only if 1 < a and ab < n.

Using the above results we show that one-paired circulant Sy graphs are Cohen-Macaulay.

Theorem 5.4. Let G be the one-paired circulant graph G = C(n;a,b). Then G is Sy if and
only if n = ab, i.e., G is Cohen-Macaulay.

Proof. By Theorem 5.2 one has

It follows that
Ind(G) = Ind(Gy) * Ind(G2) * - - - * Ind(G,,),

where * denotes the join of complexes, and G; = \/?:1 K LS for all ¢ = 1,...,a. Therefore each
Ind(Gj;) is a pure complex consists of disjoint union of b simplices with cardinality k¥ = 7. Thus

We may assume
Ind(G) == <F11, e 7F1b> * <F21, e ,ng> Kooee 3k <Fa1, e 7Fab>7

where |Fj;| =k and Fj; N Fy =0 forall1 <i k<aand1<jl<b.

If k> 1, then F' = F11UF U...UF,_1) is a face of Ind(G) whose link is linka (F) = Ind(Ga.) =
(Fal,...,Fap). This yields that dim(linka(F)) = k — 1 > 0 and linka (F) is disconnected since
b > 1. Thus, if G is Sy, then k =1, i.e., n = ab. Corollary 5.3.(i) now completes the proof. [

As an immediate consequence, we get the following which is the Sp analogue of [5, Theorem
5.9].

Corollary 5.5. Let G = C(n;1,b) = C(mb;1,b) be a one-paired circulant graph. Then G is So
if and only if m =1, i.e., G is Cohen-Macaulay.

Example 5.6. It follows from Corollaries 5.5 and 5.3.(ii) that, if m > 1, then C(mb;1,b) is

Buchsbaum but not .Ss.
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6. Circulant Cubic Graphs

A graph in which every vertex has degree 3, is called a cubic graph. It is easy to see that a
circulant cubic graph is of the form Cs,(a,n) with 1 < a < n. Brown and Hoshino [3, Theorem
4.3] characterized which connected circulant cubic graphs are well-covered. They showed that
a connected circulant cubic graph G is well-covered if and only if it is isomorphic to one of the
following graphs: Cy(1,2), Cs(1,3), Cs(2,3), Cs(1,4), or C10(2,5) (see, [3, Theorem 4.3]).

On the other hand, Vander Meulen et al. in [I7, Theorem 5.2] proved that a connected
circulant cubic graph G is Cohen-Macaulay if and only if it is isomorphic to Cy(1,2) or Cg(2, 3).
In the next Proposition we examine which connected circulant cubic graphs are Ss.

Proposition 6.1. The only non-Sy connected circulant cubic graph is Cg(1,3).

Proof. We know that Cy(1,2) and C¢(2, 3) are Cohen-Macaulay. If G = Cs(1,4), then Ind(G) =
(025, 035,036,136, 147, 247,257). Thus Ind(G) and linkp,gg)(0) are connected, i.e., G is Sz. If
G = C10(2,5), then

Ind(G) = (0147, 0347, 0367, 0369, 1258, 1458, 1478, 2369, 2569, 2589).

Again Ind(G) and linky,g(e)(0) are connected. One can easily check that linkp,q(q)(F) is con-
nected for each F' € Ind(G) with |F| = 1. Therefore C10(2,5) is also S2. Finally, note that the
independence complex of Cg(1,3) is a disconnected two dimensional simplicial complex, and so
it is not Ss. O

Example 6.2. Earl, Vander Meulen, and Van Tuyl showed that all connected circulant cubic
graphs are Buchsbaum (see [5, Table 1]). By Proposition 6.1, Cg(1,3) is the only connected
circulant cubic Buchsbaum graph which is not Ss.

We need some preliminaries to generalize Proposition 6.1 to all circulant cubic graphs.

Proposition 6.3. Let Ay and As be simplicial complexes with disjoint vertex sets. Then
A = A1 %Ay is Sy if and only if A1 and As are So.

Proof. First note that if A1 and As are nonempty simplicial complexes, then A1xAs is connected.
On the other hand, it is not difficult to check that for F; € Ay and Fy € Ay one has linka (Fy U
Fy) = linka, (F1) * linka, (F»).

Now assume A is Sy, and F} € A; is such that dim(linka, (F1)) > 0. Then for a facet Fp € Ay
one has F' = FjUF, € A and linka (F) = linka, (F})*linka, (F3) = linka, (F)*{0} = linka, (F}).
Since A is Sa, linka (F) is connected, and so is linka, (F1), i.e., Ay is So. Similarly Ag is So.
Conversely, assume A; and Ay are Sp. Also assume F' € A is such that dim(linka (F)) > 0.
If F e Ay (similarly for F' € Ag), then linka(F) = linka, (F)  linka, (0) = linka, (F') * Aa.
Now if linka, (F) # 0, then linka, (F) * Ay is always connected, and if linka, (F) = 0, then
linka (F') = Ay which is connected because it is Sy (with positive dimension) and we are done.
Now assume F' = Fy U Fy where Fy € Ay and Fy € Ao, and that Fy # 0 and F, # (. Thus
linka (F') = linka, (F1) * linka, (F2). If linka, (F1) and linka, (F») are nonempty, then linka (F')
is connected. If linka, (F1) = 0, then linka (F) = linka, (F») which is connected because Ay is
Sa. O

Corollary 6.4. Let G be a simple graph which is a disjoint union of two graphs H and K.
Then G is Sy if and only if H and K are Ss.

Proof. 1t is enough to notice that Ind(G) = Ind(H) * Ind(K), and apply Lemma 6.3. O
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We also need the following result of Davis and Domke [1] to extend Proposition 6.1 to all
circulant cubic graphs.

Theorem 6.5. Let G = Cyp(a,n) with 1 < a <n, and let t = ged(a,2n).
(i) If 27" is even, then G is isomorphic to t copies of C2Tn(1, 7).
(ii) If 2T” is odd, then G is isomorphic to % copies of C4Tn (2, 27”)

Now we bring the main result of this section.

Theorem 6.6. Let G = Ca,(a,n) be a circulant cubic graph and let t = ged(a,2n). Then G is
Sy if and only i 27” =3,4,5,8.

Proof. First assume 27" is even. By Theorem 6.5 and Corollary 6.4, G is S if and only if
27" = 4,8. Now assume 27” is odd. Again by Theorem 6.5 and Corollary 6.4, G is So if and only
if 47" = 6, 10, or equivalently, 27” =3,5. O

Example 6.7. G = C14(2, 8) is an example of a circulant graph which is Ss but not Buchsbaum.
Indeed, C16(2,8) is isomorphic to 2 copies of Cg(1,4), and hence it is Sy, but as it is shown in
[17, Table 1], it is not Buchsbaum.

As the final result of this paper, we present infinite families of circulant graphs which are Sy
but not Buchsbaum. To do this, we need the following lemma.

Lemma 6.8. ([5, Lemma 2.5|) Let G and H be two disjoint graphs that are both Buchsbaum,
but not Cohen-Macaulay. Then G U H is not Buchsbaum.

Corollary 6.9. Fort > 1, the followings are infinite families of circulant graphs which are S
but not Buchsbaum:

(i) Cse(t,4t).

(ii) Choe(2t,5t) and Choi(4t, 5t).

Proof. (i) By Theorem 6.5.(i), Cg;(t,4t) is isomorphic to ¢ > 1 copies of Cg(1,4), and hence it
is S3. On the other hand, Cg(1,4) is Buchsbaum but not Cohen-Macaulay. Thus Lemma 6.8
implies that Cg(t,4t) is not Buchsbaum.

(ii) By Theorem 6.5.(ii), Ci0:(2t,5t) and Cio(4t, 5t) are isomorphic to ¢ > 1 copies of C1¢(2,5),
and hence they are S. Again, C19(2,5) is Buchsbaum but not Cohen-Macaulay. Now Lemma
6.8 yields that Cg(t, 4t) is not Buchsbaum. O
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