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Generalization of certain well known polynomial inequalities
1. Introduction

Let p(z) be a polynomial of degree n. It satisfies the following inequalities,

(1.1) max p'(2)] < nmax Ip(2)],
and
(1.2) max Ip(2)] < R" max p(z)l, R>1.

The inequality in (1.1) is widely recognized as Bernstein’s inequality [5], while (1.2) is a straight-
forward consequence of the maximum modulus principle [9]. Equality in both cases occurs only
when p(z) is a constant multiple of z".

Restricting p(z) to polynomials of degree n that do not vanish within |z] < 1, the following
inequalities hold,

n
1.3 max |p'(2)] € = max [p(z)],
(1.3) |Z|:1| () <3 |Z|:1! (2)]
and
R"+1
(1.4) max [p(2)] < S max|p(z)|, B> 1.

|z|=R - 2 |z=1

Inequality (1.3), conjectured by Erdds, was later proven by Lax [7], while (1.4) is attributed to
Ankeny and Rivlin [1].

Expanding on (1.3), Malik [3] demonstrated that if p(z) does not vanish within |z| < k, where
k > 1, then

n
1.5 () < —— .
(1.5) max [p'(2)] < 7 max|p(2)|

Aziz and Dawood [3] refined (1.4), showing that if p(z) # 0 for |z| < 1, then

R"+1 R -1
1.6 < - i R>1.
(1.6) max |p(z)] = —5— max|p(z)]  min )l B>

For polynomials p(z) of degree n with all zeros inside |z| < 1, Aziz and Dawood [3] established
the inequality

(1.7) max [f(2)] 2 5 (max|p(=)| + min [p(z)]).

Moreover, Malik [3] proved that if all zeros of p(z) lie within |z| < k, where k < 1, then

n
1.8 (2)| > —— .
(1.8) max [p'(2)] 2 7 max|p(z)|

Jain [0], introducing the parameter /3, generalized (1.7) and (1.6) with the following results.

Theorem 1.1. If p(z) is a polynomial of degree n, with all zeros inside the closed unit disk,
then for |G| < 1,

max |27/ (2) + 7 p(2)| 2 5 [(1+ Re(8)) max|p(=)] +
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Theorem 1.2. If p(z) is a polynomial of degree n, with no zeros in |z| < 1, then for every
complex number || < 1, we have

o) +6(=5) v < 5[{ [+ 5(5)"
s (5 Tt - {4 6(55)"
(1.10) —Hﬁ(R; ) ’}qu!p( )!}

Aziz and Rather [1] extend (1.8), yielding,
Theorem 1.3. For p(z), a polynomial of degree n, with all zeros in |z| < k, where k <1, and
18] <1, we get

(1.11) max |2p/ (2 )—l—i (2)| >

mas Sp(e)| > L+ Re(8)) masx p(2)

— 14+ k |2|=1
This paper focuses on improving and generalizing the inequalities in (1.7), (1.9), (1.11) and

related results.

Theorem 1.4. If p(z) is a polynomial of degree n with all its zeros located in |z| < k, where
|k| <1 and t—fold zeros at the origin, then the following inequality holds,

(1.12) lgl‘gﬂzp’() qifﬂp() ank[{lJrRe(B)}
max[p(2)] + g {11+ A+ 8] = (1 + Re(8)} min [o(:)1].

Equality is achieved when p(z) = (2 + k)" and 8 > 0. For k = 1, t = 0, we get the following
improvement of the inequality (1.9).

Corollary 1.5. If p(z) is a polynomial of degree n with all zeros in |z| < 1, and for |5| < 1,
then,

maax|ep/(2) + 00| 2 5 [11+ Re(3)} max (o)

(1.13) {124 8 = (14 Re(8) } min [p(2)]]-

Remark 1.6. Setting f =0 in Corollary 1.5 reduces inequality (1.13) to inequality (1.7).
Remark 1.7. Setting t = 0 in Theorem 1./ reduces inequality (1.12) to Theorem 1.4 in [10)].
Next, we present the following theorem, which generalizes Theorem 1.2.

Theorem 1.8. If p(z) is a polynomial of degree n with no zeros within |z| < k, where k > 1,
with t—fold zeros at the origin, then for |3 <1 and R > 1, R>r, TR > k? and |z| = 1, the

| e )+ (7) (P 1) s
U [fie(e (R (R > »

(o) () Dmast

-l )” t(R)t\

Rk +1 Zk—j% —~
“es(ra) G b i ]
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Generalization of certain well known polynomial inequalities
is valid. This result is also optimal, and equality holds for p(z) = Ak™ + 2", with |\ > |v|.

Remark 1.9. Setting k =1, r =1, t =0, reduces Theorem 1.8 to Theorem 1.2, and if k =1,
r=1,t=0, 8 =0 the inequality is simplified further to inequality (1.6).

2. Lemmas
We will need the following lemmas to prove our theorems.

Lemma 2.1. If p(z) is a polynomial of degree n with all its zeros in |z| < k, where k < 1, with
t—fold zeros at the origin, then for R >r, rR > k?,

(21) )z () (C0) ) gor el =1,

This lemma is due to Zargar [11].
For t =0, r = 1, Lemma 2.1 reduces to a result due to Aziz [2].

Lemma 2.2. If p(z) is a polynomial of degree n with all its zeros in |z| < k, where k < 1, with
t—fold zeros at the origin, then for |5 <1 and |z] =1,
, n+ tk) n + tk
> 14+ R .
() + (T ) e 2 T (L Re(8)}n(2)

Proof. We know that if p(z) is a polynomial of degree n with all zeros in |z| < k, where k < 1,

(2.2)

with t—fold zeros at the origin [10], then
n + tk

29/(2) = S p(e)]

Now by choosing an appropriate argument for 3, we have,
n +tk

n + tk
0| o [

tk
L+ 18D p(2)

2p'(2) + Bp(2)| >

1+
n+ tk
()] + (

> "”’“{HR( B)}p(2)|.

n + tk

Loz )‘:

O

Lemma 2.3. If p(z) is a polynomial of degree n with all its zeros in |z| < k, where k < 1, with
t—fold zeros at the origin, then for R >r, rR > k%, |3] <1

(23) i [p/(2) + 00| 2 G [1 4 T min (),
and

min o) + 8 ) () wen| = gl s ()
(2.4) (%)tr min [p(=)|, B> 1.

Proof. If p(z) has a zero on |z| = k, then inequalities become trivial. Assuming instead that
p(2) has all zeros within |z| < k, and letting m = |H|lirlt’|p(2)|’ where m > 0, then for any complex
z|l=

a with |af < 1,

amzn+tk
‘W‘ < |p(z)|, for ‘Z| = k.

)n+tk

By Rouche’s theorem, the polynomial p(z) — am (% , which has degree n, possesses all its

zeros inside |z| < k with t-fold zeros at the origin. From Lemma 2.2 (for 8 = 0), it follows that
107
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am(n +tk) , n +tk z\ itk
2p'(2) = knm)z ik m(p(z) _O‘m(E) ) forlel=1.

Therefore, for |5| < 1, we obtain

am(n+tk) , n+ tk z\nttk
@)~ w2 T 5(v(2) _O‘m(E> )=
n + tk am(n +tk) , Ié]
2p' (2) + Tk Bp(z) — k(nﬂk)z ik <1 + m) #0 for |z| = 1.

Now, by appropriately choosing the argument of « and allowing |o| — 1, we conclude that for
|zl =1and |B] <1

n+tk n+tk I5;
> 1 ( .
15 P = k“”’f‘ R

2p'(2) +

Now by continuity on applying Lemma 2.1 to the polynomial p(z) — am (%)m—tk and using the
same argument as above, the inequality (2.4) follows. O

Lemma 2.4. If p(z) is a polynomial of degree n, having no zeros in |z| < k (k > 1), except
t—fold zeros at the origin, then for |3| <1, R>r, rR>k? and |z| =1,

o) + () (B )" ) <

1+ kr
@5 el <o(5) (o) o)
where Q(z) = +ip(1).
Proof. Let p(z) = z'h(z). Then
000 = n(3)= (1) =1 (2)

and by hypothesis, p(z) # 0 in |z| < k, k > 1, therefore, Q(z) is the polynomial of degree n and

has all its zeros in |z| < z with t-fold zeros at the origin. As

1
- Knth

1
1Q(2)] [p(k*z)| for |2] = —,

1
the polynomial k" Q(z) — ap(k?z) of degree n has all its zeros in |z| < Z for |a| < 1 and t-fold
zeros at the origin. Therefore by Lemma 2.1 for R > 1 and |z| = 1, we have

R Rk + 1\n—
|E"MQ(Rz) — ap(Rk?z)| > (?)t< T —i—dll—cr) t|kn+tQ(7~z) — ap(rk?z)|.

It follows that for || < 1 and |z| =1,
7(2) =k Q) + 5D (Y o))
(2.6) - a{p(Rsz) + B<§>t<Rk i 1>n_tp(rk22)} # 0.
This implies for |a] < 1, R > 1 and |2]| =1,
ey (2 (D) e

1+rk
(2.7) | Q(r2) +ﬁ(§)t(Rk+ D" a0,

1+7rk
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If inequality (2.7) is not true, then there exists a point z = 2o with |z9| = 1 such that

) (B (0 )
ot (B () ),

We have

e {ameo + () (5) @)

Rk + 1\n—t
p(Rk2z0)+ﬁ<kr+l)

Then |o| < 1 and with this choice of a, we have from (2.6), T'(z9) = 0 for |z9| = 1. But this
contradicts the fact that T'(z) # 0 for |z| = 1. This completes the proof of Lemma 2.4. O

o =

p(rk?zo)

Lemma 2.5. If p(z) is a polynomial of degree n, with t—fold zeros at the origin, then for |B| <1,
R>r,rR>k* and |2| > 1,

i+ 5 () o
(2.8) 'ZZ' R +5(m)“(f)tr" max [p(2).

1
Proof. Let Q(z) = z”p(:) and M = max |Q(2)]. A direct application of Rouch’s theorem
z |2l=5<1

shows that for every a with |a| > 1, the polynomial G(z) = Q(z) — aM does not vanish in
. f

|z| < ¢ and G*(z) = z”G(%) has all it’s zeros in |z| < k with t—fold zeros at the origin.
Applying Lemma 2.1 to the polynomial G*(z), we get for |z] =1 and R > 1

(2.9) G*(R2)| > (R) (f::)”_ﬂa*(m)y

Using Rouche’s theorem again, it follows from (2.9) that for every § with |§| < 1 all the zeros

t n—t
of polynomial G*(Rz) + B(?) (fi:) G*(rz) liein |z] < 1.

Replacing G*(z) by p(z) — aMz", we conclude that all the zeros of

s =p(re) + ()" (7)) plra) -
e+ o() () v}

liein |z < 1for R > 1,k <1, |al >1and || < 1. This implies for 3] <1, R > 1, kK <1 and
2| = 1,

e o R o O

Because if this is not true, then there is a point zp with |z9| > 1, such that

b+ 8 ) (2t |+ (2 (|
We have
pRa) ()T () o)
a = )
u{re ()T () )

109



Measure Algebras and Applications, Year. 2025, Vol. 3, No. 1, pp. 104-112

then |o| > 1 and with this choice of «, we have S(z9) = 0 for |zp| > 1. But this contradicts the
fact that S(z) # 0 for |z| > 1. Thus for |8| <1, R>r, rR > k% and |2| > 1,
R+ k\n—t R\t R+ k\n—t R\t
P )| sl () (F)
) () (B o] < e« o B2 (2’

replacing M by kinlm‘aﬁp(z)], we get inequality (2.8). O
zl=

)

Lemma 2.6. If p(z) is a polynomial of degree n, then for |3| <1, |z| =1 and R > r, Rr > k?,
k > 1 with t—fold zeros at the origin
Rk + 1\t /R R
[p(RR22) + ( )

By (8 ] o (2

) G)

RE+1
rk+1

f

Proof. If M = ‘ I|n%X |p(2)], then |p(z)| < M for |z| = k. Therefore, for a given complex number
z|=k>1

A with |A] > 1, it follows by Rouche’s theorem that the polynomial w(z) = p(z) + AM does not
vanish in |z| < k. Hence from Lemma 2.4, for |3| <1, |z| =1 and rR > k?, R > r, we get

b+ 5(1) (B e oo 5(1) (B2 1)<
RE+1

rk+1
choosing argument of A in the right hand side of (2.11) such that

}Q(Rz) + B(Rk i 1)"%(5)13@(7%) + XMZ"{R” n (R)t(Rk + 1)"7%}

ot

1) =i B3Iy By

rk+1 r

R"+5(

+‘1+ﬁ<

r T

where Q(2) = 2"p(L), M = maxlp(z)

9

(2.11) kn+t‘Q(Rz) + AMR"2" + 5<§>t< >n_t(Q(rz) + /_\Mznrn>

rk+1 r r/) \rk+1
e (B (B ey (DY (B )|
by Lemma 2.5, we get
a5 B0 (Y] (Bt (B
w5 (B arforme 4 (BEELY (B g
Equivalently
e+ () () o)
revfarma s a(B ) (B o)
< i s (BY i s(BEEDY (B )

Finally letting |\| — 1, we get inequality (2.10) and this completes the proof of Lemma 2.6. O

3. Proof of the theorems

Proof of Theorem 1.4. If p(z) has a zero on |z| = k, inequality (1.12) reduces to

/ n +tk n+tk
(3.1) max |29/ (2) + T Ap(e)| = g {1+ Re(6)} mas (=)

which is straightly followed from Lemma 2.2. So we suppose that p(z) has all its zeros in |z| < k,

)

then m = ln‘lin |p(2)| > 0. Therefore if « is a complex number such that |a| < 1, then it follows
z|=k
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am (%)n“k has all its zeros in |z] < k, k < 1,

by Rouche’s theorem that the polynomial p(z) —
with ¢—fold zeros at the origin.
Applying Lemma 2.2, we get for |z| =1

D e -an ()2

2p'(2) — am(n + tk)(

n +tk n+tk
(3.2) 14_]{:(1—1—Re ‘p —am(k> )
Equivalently
, n+tk B n+tk B
zp'(2) + 1+kﬁp(z) am(n+tk)<k) <1+71+k>
n + tk n+tk
> — .
> g (L Re() o) —am ()|
By Lemma 2.3 (inequality (2.3)), we have
L mttk n+ th 5| .
min P(2)+ 5 s Bp(2)| 2 T ‘1+ min Ip(2)|.

By choosing « suitable argument of v and letting |o| — 1, for |z| = 1, we get

n +tk m(n + tk)
_ >
1+k6p(z)’ Jen+tk ’1+1+k‘_
n +tk

o R {IP@)] - i -

From which we can obtain Theorem 1.4.

’zp’(z) +

(3.3)

Proof of Theorem 1.8. If p(z) has a zero on |z| = k, then by Lemma 2.4, we have for |z| = 1,
RNt/ Rk + 1\n—t
2 2
— <
‘p(Rk‘ Z)_’_B(r) (Tk—{—l) p(rk Z)‘_
RNt/ Rk + 1\n—t
n—+t v
g ‘Q(RzHﬂ(r) (rk+1>

On applying Lemma 2.6, we get the conclusion of Theorem 1.8. Therefore we assume that p(z)

has all its zeros in |z| > k with t—fold zeros at the origin. Let m = |n|11n Ip(2)], then m < |p(z)|,
for |z| = k. If o is a complex number such that |o| < 1, then it follows from Rouche’s theorem

that the polynomial p;(z) = p(z) — am having no zeros in |z| < k. Hence by Lemma 2.4, we get
for |z| <1

s+ 5(0) (B0 ol

1
RNt Rk+1)

t Rk—i—l)
@ +5(3) (G3t)

where Q1(z) = 2" p (g) — 2"tam. Equivalently

otz + () () oera ) —amfa (1) ()Y <

rk+1 r rk+1
er{ame (B (2 ) i a(BE U () )|
or for |2| = 1
b+ (Bt 1) (B s - () (2 )
00 eforna () (B apa| - mar il (B ()|
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On applying lemma 2.3 (inequality (2.4)) to the polynomial Q(z) and rewriting (3.4), we get

for |z] =1
s (B (B e i () (2]
3 () o] -t (B (B) |
As |a| — 1, we obtain for |z| =1
(D) (Yo -tefn o (B e
<mftea(G) ) s () ()

Now by Lemma 2.6, we get the derived result and this completes the proof of Theorem 1.8.
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