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[6], Aziz and Rather [4]. Several known in-
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timates and derivative bounds of analytic
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1. Introduction

Let p(z) be a polynomial of degree n. It satisfies the following inequalities,

(1.1) max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|,

and

(1.2) max
|z|=R

|p(z)| ≤ Rnmax
|z|=1

|p(z)|, R > 1.

The inequality in (1.1) is widely recognized as Bernstein’s inequality [5], while (1.2) is a straight-
forward consequence of the maximum modulus principle [9]. Equality in both cases occurs only
when p(z) is a constant multiple of zn.

Restricting p(z) to polynomials of degree n that do not vanish within |z| < 1, the following
inequalities hold,

(1.3) max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|,

and

(1.4) max
|z|=R

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)|, R > 1.

Inequality (1.3), conjectured by Erdös, was later proven by Lax [7], while (1.4) is attributed to
Ankeny and Rivlin [1].

Expanding on (1.3), Malik [8] demonstrated that if p(z) does not vanish within |z| < k, where
k ≥ 1, then

(1.5) max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|.

Aziz and Dawood [3] refined (1.4), showing that if p(z) ̸= 0 for |z| < 1, then

(1.6) max
|z|=R

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)| − Rn − 1

2
min
|z|=1

|p(z)|, R > 1.

For polynomials p(z) of degree n with all zeros inside |z| ≤ 1, Aziz and Dawood [3] established
the inequality

(1.7) max
|z|=1

|p′(z)| ≥ n

2

(
max
|z|=1

|p(z)|+ min
|z|=1

|p(z)|
)
.

Moreover, Malik [8] proved that if all zeros of p(z) lie within |z| < k, where k ≤ 1, then

(1.8) max
|z|=1

|p′(z)| ≥ n

1 + k
max
|z|=1

|p(z)|.

Jain [6], introducing the parameter β, generalized (1.7) and (1.6) with the following results.

Theorem 1.1. If p(z) is a polynomial of degree n, with all zeros inside the closed unit disk,
then for |β| ≤ 1,

max
|z|=1

∣∣∣zp′(z) + nβ

2
p(z)

∣∣∣ ≥ n

2

[
(1 + Re(β))max

|z|=1
|p(z)|+

|(1 + Re(β))− |β||min
|z|=1

|p(z)|
]
.(1.9)
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Theorem 1.2. If p(z) is a polynomial of degree n, with no zeros in |z| < 1, then for every
complex number |β| ≤ 1, we have

max
|z|=1

∣∣∣p(Rz) + β
(R+ 1

2

)n
p(z)

∣∣∣ ≤ 1

2

[{∣∣∣Rn + β
(R+ 1

2

)n∣∣∣
+
∣∣∣1 + β

(R+ 1

2

)n∣∣∣}max
|z|=1

|p(z)| −
{∣∣∣Rn + β

(R+ 1

2

)n∣∣∣
−
∣∣∣1 + β

(R+ 1

2

)n∣∣∣}min
|z|=1

|p(z)|
]
.(1.10)

Aziz and Rather [4] extend (1.8), yielding,

Theorem 1.3. For p(z), a polynomial of degree n, with all zeros in |z| ≤ k, where k ≤ 1, and
|β| ≤ 1, we get

(1.11) max
|z|=1

∣∣∣zp′(z) + nβ

1 + k
p(z)

∣∣∣ ≥ n

1 + k
{1 + Re(β)}max

|z|=1
|p(z)|.

This paper focuses on improving and generalizing the inequalities in (1.7), (1.9), (1.11) and
related results.

Theorem 1.4. If p(z) is a polynomial of degree n with all its zeros located in |z| ≤ k, where
|k| ≤ 1 and t−fold zeros at the origin, then the following inequality holds,

max
|z|=1

∣∣∣zp′(z) + n+ tk

1 + k
βp(z)

∣∣∣ ≥ n+ tk

1 + k

[
{1 + Re(β)}(1.12)

max
|z|=1

|p(z)|+ 1

kn+tk

{
|1 + k + β| − (1 + Re(β))

}
min
|z|=k

|p(z)|
]
.

Equality is achieved when p(z) = (z + k)n and β ≥ 0. For k = 1, t = 0, we get the following
improvement of the inequality (1.9).

Corollary 1.5. If p(z) is a polynomial of degree n with all zeros in |z| ≤ 1, and for |β| ≤ 1,
then,

max
|z|=1

∣∣∣zp′(z) + nβ

2
p(z)

∣∣∣ ≥ n

2

[
{1 + Re(β)}max

|z|=1
|p(z)|

+
{
|2 + β| − (1 + Re(β))

}
min
|z|=1

|p(z)|
]
.(1.13)

Remark 1.6. Setting β = 0 in Corollary 1.5 reduces inequality (1.13) to inequality (1.7).

Remark 1.7. Setting t = 0 in Theorem 1.4 reduces inequality (1.12) to Theorem 1.4 in [10].

Next, we present the following theorem, which generalizes Theorem 1.2.

Theorem 1.8. If p(z) is a polynomial of degree n with no zeros within |z| < k, where k ≥ 1,
with t−fold zeros at the origin, then for |β| ≤ 1 and R > 1, R ≥ r, rR ≥ k2 and |z| = 1, the
inequality,

max
|z|=1

∣∣∣p(Rk2z) + β
(R
r

)t(Rk + 1

rk + 1

)n−t
p(rk2z)

∣∣∣
≤ 1

2

[{
kn+t

∣∣∣Rn + β
(R
r

)t(Rk + 1

rk + 1

)n−t∣∣∣+∣∣∣1 + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣}max
|z|=k

|p(z)|

−
{
kn+t

∣∣∣Rn + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣
−
∣∣∣1 + β

(Rk + 1

rk + 1

)n−t(R
r

)t
rn
∣∣∣} min

|z|=k
|p(z)|

]
,
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is valid. This result is also optimal, and equality holds for p(z) = λkn + γzn, with |λ| ≥ |γ|.

Remark 1.9. Setting k = 1, r = 1, t = 0, reduces Theorem 1.8 to Theorem 1.2, and if k = 1,
r = 1, t = 0, β = 0 the inequality is simplified further to inequality (1.6).

2. Lemmas

We will need the following lemmas to prove our theorems.

Lemma 2.1. If p(z) is a polynomial of degree n with all its zeros in |z| ≤ k, where k ≤ 1, with
t−fold zeros at the origin, then for R ≥ r, rR ≥ k2,

(2.1) |p(Rz)| ≥
(R
r

)t(R+ k

r + k

)n−t
|p(rz)|, for |z| = 1.

This lemma is due to Zargar [11].
For t = 0, r = 1, Lemma 2.1 reduces to a result due to Aziz [2].

Lemma 2.2. If p(z) is a polynomial of degree n with all its zeros in |z| ≤ k, where k ≤ 1, with
t−fold zeros at the origin, then for |β| ≤ 1 and |z| = 1,

(2.2)
∣∣∣zp′(z) + (n+ tk

1 + k

)
βp(z)

∣∣∣ ≥ n+ tk

1 + k
{1 + Re(β)}|p(z)|.

Proof. We know that if p(z) is a polynomial of degree n with all zeros in |z| ≤ k, where k ≤ 1,
with t−fold zeros at the origin [10], then

|zp′(z)| ≥ n+ tk

1 + k
|p(z)|.

Now by choosing an appropriate argument for β, we have,∣∣∣zp′(z) + n+ tk

1 + k
βp(z)

∣∣∣ = |zp′(z)|+
∣∣∣n+ tk

1 + k
βp(z)

∣∣∣ ≥
n+ tk

1 + k
|p(z)|+

∣∣∣n+ tk

1 + k
βp(z)

∣∣∣ = n+ tk

1 + k
{1 + |β|}|p(z)|

≥ n+ tk

1 + k
{1 + Re(β)}|p(z)|.

□

Lemma 2.3. If p(z) is a polynomial of degree n with all its zeros in |z| ≤ k, where k ≤ 1, with
t−fold zeros at the origin, then for R ≥ r, rR ≥ k2, |β| ≤ 1

(2.3) min
|z|=1

∣∣∣p′(z) + n+ tk

1 + k
βp(z)

∣∣∣ ≥ n+ tk

kn+tk

∣∣∣1 + β

1 + k

∣∣∣ min
|z|=k

|p(z)|,

and

min
|z|=1

∣∣∣p(Rz) + β
(R+ k

r + k

)n−t(R
r

)t
p(rt)

∣∣∣ ≥ 1

kn

∣∣∣Rn + β
(R+ k

r + k

)n−t

(R
r

)t
rn
∣∣∣ min
|z|=k

|p(z)|, R > 1.(2.4)

Proof. If p(z) has a zero on |z| = k, then inequalities become trivial. Assuming instead that
p(z) has all zeros within |z| < k, and letting m = min

|z|=k
|p(z)|, where m > 0, then for any complex

α with |α| < 1, ∣∣∣αmzn+tk

kn+tk

∣∣∣ < |p(z)|, for |z| = k.

By Rouche’s theorem, the polynomial p(z) − αm
(
z
k

)n+tk, which has degree n, possesses all its
zeros inside |z| < k with t-fold zeros at the origin. From Lemma 2.2 (for β = 0), it follows that
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∣∣∣zp′(z)− αm(n+ tk)

kn+tk
zn+tk

∣∣∣ ≥ n+ tk

1 + k

(
p(z)− αm

(z
k

)n+tk)
for |z| = 1.

Therefore, for |β| < 1, we obtain

zp′(z)− αm(n+ tk)

kn+tk
zn+tk +

n+ tk

1 + k
β
(
p(z)− αm

(z
k

)n+tk)
=

zp′(z) +
n+ tk

1 + k
βp(z)− αm(n+ tk)

kn+tk
zn+tk

(
1 +

β

1 + k

)
̸= 0 for |z| = 1.

Now, by appropriately choosing the argument of α and allowing |α| −→ 1, we conclude that for
|z| = 1 and |β| < 1 ∣∣∣zp′(z) + n+ tk

1 + k
βp(z)

∣∣∣ ≥ n+ tk

kn+tk

∣∣∣1 + β

1 + k

∣∣∣m.

Now by continuity on applying Lemma 2.1 to the polynomial p(z)− αm
(
z
k

)n+tk and using the
same argument as above, the inequality (2.4) follows. □

Lemma 2.4. If p(z) is a polynomial of degree n, having no zeros in |z| < k (k ≥ 1), except
t−fold zeros at the origin, then for |β| ≤ 1, R ≥ r, rR ≥ k2 and |z| = 1,∣∣∣p(Rk2z) + β

(R
r

)t(Rk + 1

1 + kr

)n−t
p(rk2z)

∣∣∣ ≤
kn+t

∣∣∣Q(Rz) + β
(R
r

)t(Rk + 1

1 + kr

)n−t
Q(rz)

∣∣∣,(2.5)

where Q(z) = zn+tp
(1
z̄

)
.

Proof. Let p(z) = zth(z). Then

Q(z) = zn+tp
(1
z̄

)
= zth

(1
z̄

)
=zt(zn−th

(1
z̄

)
)

and by hypothesis, p(z) ̸= 0 in |z| < k, k ≥ 1, therefore, Q(z) is the polynomial of degree n and
has all its zeros in |z| ≤ 1

k
with t-fold zeros at the origin. As

|Q(z)| = 1

Kn+t
|p(k2z)| for |z| = 1

k
,

the polynomial kn+tQ(z)−αp(k2z) of degree n has all its zeros in |z| ≤ 1

k
for |α| < 1 and t-fold

zeros at the origin. Therefore by Lemma 2.1 for R > 1 and |z| = 1, we have
|kn+tQ(Rz)− αp(Rk2z)| ≥

(R
r

)t(Rk + 1

1 + kr

)n−t
|kn+tQ(rz)− αp(rk2z)|.

It follows that for |β| < 1 and |z| = 1,

T (z) = kn+t
{
Q(Rz) + β

(Rk + 1

1 + rk

)n−t(R
r

)t
Q(rz)

}
− α

{
p(Rk2z) + β

(R
r

)t(Rk + 1

1 + rk

)n−t
p(rk2z)

}
̸= 0.(2.6)

This implies for |α| < 1, R > 1 and |z| = 1,∣∣∣p(Rk2z) + β
(R
r

)t(Rk + 1

1 + rk

)n−t
p(rk2z)

∣∣∣ ≤
kn+t

∣∣∣Q(Rz) + β
(R
r

)t(Rk + 1

1 + rk

)n−t
Q(rz)

∣∣∣.(2.7)
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If inequality (2.7) is not true, then there exists a point z = z0 with |z0| = 1 such that∣∣∣p(Rk2z0) + β
(Rk + 1

kr + 1

)n−t(R
r

)t
p(k2rz0)

∣∣∣ >
kn+t

∣∣∣Q(Rz0) + β
(Rk + 1

kr + 1

)n−t(R
r

)t
Q(rz0)

∣∣∣.
We have

α =

kn+t

{
Q(Rz0) + β

(Rk + 1

kr + 1

)n−t(R
r

)t
Q(rz0)

}
p(Rk2z0) + β

(Rk + 1

kr + 1

)n−t
p(rk2z0)

.

Then |α| < 1 and with this choice of α, we have from (2.6), T (z0) = 0 for |z0| = 1. But this
contradicts the fact that T (z) ̸= 0 for |z| = 1. This completes the proof of Lemma 2.4. □

Lemma 2.5. If p(z) is a polynomial of degree n, with t−fold zeros at the origin, then for |β| ≤ 1,
R > r, rR ≥ k2 and |z| ≥ 1,∣∣∣p(Rz) + β

(R+ k

r + k

)n−t(R
r

)t
p(rz)

∣∣∣ ≤
|zn|
kn

∣∣∣Rn + β
(R+ k

r + k

)n−t(R
r

)t
rn
∣∣∣ max
|z|=k≤1

|p(z)|.(2.8)

Proof. Let Q(z) = znp
(1
z̄

)
and M = max

|z|= 1
k
≤1
|Q(z)|. A direct application of Rouch’s theorem

shows that for every α with |α| > 1, the polynomial G(z) = Q(z) − αM does not vanish in
|z| < 1

k and G∗(z) = znG
(
1
z̄

)
has all it’s zeros in |z| ≤ k with t−fold zeros at the origin.

Applying Lemma 2.1 to the polynomial G∗(z), we get for |z| = 1 and R > 1

(2.9) |G∗(Rz)| ≥
(R
r

)t(R+ k

r + k

)n−t
|G∗(rz)|.

Using Rouche’s theorem again, it follows from (2.9) that for every β with |β| < 1 all the zeros
of polynomial G∗(Rz) + β

(R
r

)t(R+ k

r + k

)n−t
G∗(rz) lie in |z| < 1.

Replacing G∗(z) by p(z)− ᾱMzn, we conclude that all the zeros of

S(z) = p(Rz) + β
(R+ k

r + k

)n−t(R
r

)t
p(rz)−

ᾱ
{
RnznM + β

(R+ k

r + k

)n−t(R
r

)t
Mznrn

}
lie in |z| < 1 for R > 1, k ≤ 1, |α| > 1 and |β| < 1. This implies for |β| < 1, R > 1, k ≤ 1 and
|z| ≥ 1, ∣∣∣p(Rz) + β

(R+ k

r + k

)n−t(R
r

)t
p(rz)

∣∣∣ ≤ |zn|M
∣∣∣Rn + β

(R+ k

r + k

)n−t(R
r

)t
rn
∣∣∣.

Because if this is not true, then there is a point z0 with |z0| ≥ 1, such that∣∣∣p(Rz0) + β
(R+ k

r + k

)n−t(R
r

)t
p(rz0)

∣∣∣ > |zn0 |M
∣∣∣Rn + β

(R+ k

r + k

)n−t(R
r

)t
rn
∣∣∣.

We have

ᾱ =
p(Rz0) + β

(R+ k

r + k

)n−t(R
r

)t
p(rz0)

zn0M
{
Rn + β

(R+ k

r + k

)n−t(R
r

)t
rn
} ,
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then |α| > 1 and with this choice of α, we have S(z0) = 0 for |z0| ≥ 1. But this contradicts the
fact that S(z) ̸= 0 for |z| ≥ 1. Thus for |β| < 1, R > r, rR ≥ k2 and |z| ≥ 1,∣∣∣p(Rz) + β

(R+ k

r + k

)n−t(R
r

)t
p(rz)

∣∣∣ ≤ |zn|M
∣∣∣Rn + β

(R+ k

r + k

)n−t(R
r

)t
rn
∣∣∣,

replacing M by 1
knmax

|z|=k
|p(z)|, we get inequality (2.8). □

Lemma 2.6. If p(z) is a polynomial of degree n, then for |β| ≤ 1, |z| = 1 and R > r, Rr ≥ k2,
k ≥ 1 with t−fold zeros at the origin∣∣∣p(Rk2z) + β

(Rk + 1

rk + 1

)n−t(R
r

)t

p(rk2z)
∣∣∣+ kn+t

∣∣∣Q(Rz) + β
(R
r

)t(Rk + 1

rk + 1

)n−t

Q(rz)
∣∣∣

≤
{
kn+t

∣∣∣Rn + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣+ ∣∣∣1 + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣}M,(2.10)

where Q(z) = znp
(
1
z̄

)
, M = max

|z|=k
|p(z)|.

Proof. If M = max
|z|=k≥1

|p(z)|, then |p(z)| ≤ M for |z| = k. Therefore, for a given complex number

λ with |λ| > 1, it follows by Rouche’s theorem that the polynomial w(z) = p(z) + λM does not
vanish in |z| < k. Hence from Lemma 2.4, for |β| ≤ 1, |z| = 1 and rR ≥ k2, R > r, we get∣∣∣p(Rk2z) + β

(R
r

)t(Rk + 1

rk + 1

)n−t
p(rk2z) + λM

(
1 + β

(R
r

)t(Rk + 1

rk + 1

)n−t)∣∣∣ ≤
kn+t

∣∣∣Q(Rz) + λ̄MRnzn + β
(R
r

)t(Rk + 1

rk + 1

)n−t
(Q(rz) + λ̄Mznrn

)∣∣∣,(2.11)

choosing argument of λ in the right hand side of (2.11) such that∣∣∣Q(Rz) + β
(Rk + 1

rk + 1

)n−t(R
r

)t
Q(rz) + λ̄Mzn

{
Rn +

(R
r

)t(Rk + 1

rk + 1

)n−t
rn
}∣∣∣

= M |λ||zn|
∣∣∣Rn + β

(Rk + 1

rk + 1

)n−t(R
r

)t
rn
∣∣∣− ∣∣∣Q(Rz) + β

(Rk + 1

rk + 1

)n−t(R
r

)t
Q(rz)

∣∣∣,
by Lemma 2.5, we get∣∣∣p(Rk2z) + β

(Rk + 1

rk + 1

)n−t(R
r

)t

p(rk2z)
∣∣∣−M |λ|

∣∣∣1 + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣ ≤
Mkn+t|λ||zn|

∣∣∣Rn + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣− kn+t
∣∣∣Q(Rz) + β

(Rk + 1

rk + 1

)n−t(R
r

)t

Q(rz)
∣∣∣.

Equivalently∣∣∣p(Rk2z) + β
(Rk + 1

rk + 1

)n−t(R
r

)t
p(rk2z)

∣∣∣
+ kn+t

∣∣∣Q(Rz) + β
(Rk + 1

rk + 1

)n−t(R
r

)t
Q(rz)

≤ M |λ|
{
kn+t

∣∣∣Rn + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣+ ∣∣∣1 + β
(Rk + 1

rk + 1

)n−t(R
r

)t∣∣∣}.
Finally letting |λ| −→ 1, we get inequality (2.10) and this completes the proof of Lemma 2.6. □

3. Proof of the theorems

Proof of Theorem 1.4. If p(z) has a zero on |z| = k, inequality (1.12) reduces to

(3.1) max
|z|=1

∣∣∣zp′(z) + n+ tk

1 + k
βp(z)

∣∣∣ ≥ n+ tk

1 + k

{
(1 + Re(β)

}
max
|z|=1

∣∣∣p(z)∣∣∣,
which is straightly followed from Lemma 2.2. So we suppose that p(z) has all its zeros in |z| < k,
then m = min

|z|=k
|p(z)| > 0. Therefore if α is a complex number such that |α| < 1, then it follows
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by Rouche’s theorem that the polynomial p(z)− αm
(
z
k

)n+tk has all its zeros in |z| < k, k ≤ 1,
with t−fold zeros at the origin.

Applying Lemma 2.2, we get for |z| = 1∣∣∣∣zp′(z)− αm(n+ tk)
(z
k

)n+tk
+

n+ tk

1 + k
β
(
p(z)− αm

(z
k

)n+tk)∣∣∣∣ ≥
n+ tk

1 + k
(1 + Re(β))

∣∣∣p(z)− αm
(z
k

)n+tk∣∣∣.(3.2)

Equivalently ∣∣∣∣zp′(z) + n+ tk

1 + k
βp(z)− αm(n+ tk)

(z
k

)n+tk(
1 +

β

1 + k

)∣∣∣∣
≥ n+ tk

1 + k

(
1 + Re(β)

)∣∣∣p(z)− αm
(z
k

)n+tk∣∣∣.
By Lemma 2.3 (inequality (2.3)), we have

min
|z|=1

∣∣∣p′(z) + n+ tk

1 + k
βp(z)

∣∣∣ ≥ n+ tk

kn+tk

∣∣∣1 + β

1 + k

∣∣∣ min
|z|=k

|p(z)|.

By choosing α suitable argument of α and letting |α| −→ 1, for |z| = 1, we get∣∣∣zp′(z) + n+ tk

1 + k
βp(z)

∣∣∣− m(n+ tk)

kn+tk

∣∣∣1 + β

1 + k

∣∣∣ ≥
n+ tk

1 + k

(
1 + Re(β)

){
|P (Z)| − m

kn+tk

}
.(3.3)

From which we can obtain Theorem 1.4.
Proof of Theorem 1.8. If p(z) has a zero on |z| = k, then by Lemma 2.4, we have for |z| = 1,∣∣∣p(Rk2z) + β

(R
r

)t(Rk + 1

rk + 1

)n−t
p(rk2z)

∣∣∣ ≤
kn+t

∣∣∣Q(Rz) + β
(R
r

)t(Rk + 1

rk + 1

)n−t
Q(rz)

∣∣∣.
On applying Lemma 2.6, we get the conclusion of Theorem 1.8. Therefore we assume that p(z)

has all its zeros in |z| > k with t−fold zeros at the origin. Let m = min
|z|=k

|p(z)|, then m ≤ |p(z)|,

for |z| = k. If α is a complex number such that |α| < 1, then it follows from Rouche’s theorem
that the polynomial p1(z) = p(z)−αm having no zeros in |z| < k. Hence by Lemma 2.4, we get
for |z| < 1 ∣∣∣p1(Rk2z) + β

(R
r

)t(Rk + 1

rk + 1

)n−t
p1(rk

2z)
∣∣∣ ≤ kn+t∣∣∣Q1(Rz) + β

(R
r

)t(Rk + 1

rk + 1

)n−t
Q1(rz)

∣∣∣,
where Q1(z) = zn+tp

(
1
z̄

)
− zn+tαm. Equivalently∣∣∣∣{p(Rk2z) + β

(Rk + 1

rk + 1

)n−t(R
r

)t

p(k2rz)
}
− αm

{
1 + β

(R
r

)t(Rk + 1

rk + 1

)n−t}∣∣∣∣ ≤∣∣∣∣kn+t
{
Q(Rz) + β

(Rk + 1

rk + 1

)n−t(R
r

)t

Q(rz)
}
−mkn+tαzn

{
Rn + β

(Rk + 1

rk + 1

)n−t(R
r

)t

rn
}∣∣∣∣,

or for |z| = 1∣∣∣∣p(Rk2z) + β
(Rk + 1

rk + 1

)n−t(R
r

)t

p(k2rz)

∣∣∣∣− |α|m
∣∣∣∣1 + β

(R
r

)t(Rk + 1

rk + 1

)n−t
∣∣∣∣≤∣∣∣∣kn+t

∣∣∣∣Q(Rz) + β
(Rk + 1

rk + 1

)n−t(R
r

)t

Q(rz)

∣∣∣∣−mkn+t|α|
∣∣∣∣Rn + β

(Rk + 1

rk + 1

)n−t(R
r

)t

rn
∣∣∣∣∣∣∣∣.(3.4)
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On applying lemma 2.3 (inequality (2.4)) to the polynomial Q(z) and rewriting (3.4), we get
for |z| = 1∣∣∣∣p(Rk2z) + β

(Rk + 1

rk + 1

)n−t(R
r

)t
p(rk2z)

∣∣∣∣− |α|m
∣∣∣∣1 + β

(Rk + 1

rk + 1

)n−t(R
r

)t
∣∣∣∣ ≤

kn+t

∣∣∣∣Q(Rz) + β
(Rk + 1

rk + 1

)n−t(R
r

)t
Q(rz)

∣∣∣∣−mkn+t|α|
∣∣∣∣Rn + β

(Rk + 1

rk + 1

)n−t(R
r

)t
rn
∣∣∣∣.

As |α| −→ 1, we obtain for |z| = 1∣∣∣∣p(Rk2z) + β
(Rk + 1

rk + 1

)n−t(R
r

)t
p(rk2z)

∣∣∣∣− kn+t

∣∣∣∣Q(Rz) + β
(Rk + 1

rk + 1

)n−t(R
r

)t
Q(rz)

∣∣∣∣
≤ m

{∣∣∣∣1 + β
(Rk + 1

rk + 1

)n−t(R
r

)t
∣∣∣∣− kn+t

∣∣∣∣Rn + β
(Rk + 1

rk + 1

)n−t(R
r

)t
rn
∣∣∣∣}.

Now by Lemma 2.6, we get the derived result and this completes the proof of Theorem 1.8.
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