



Generalization of certain well known polynomial inequalities

M. Shahmoradi¹, M. Bidkham^{1✉}

1. Department of Mathematics, Semnan University, Semnan, Iran.

Email: m.shahmoradi@semnan.ac.ir,
mbidkham@semnan.ac.ir (Corresponding Author)

Article Info

ABSTRACT

Article history:

Received: 19 February 2025

Received in revised form:

24 May 2025

Accepted: 12 June 2025

Published Online:

25 June 2025

Keywords:

Complex polynomial,

Inequalities,

Maximum modulus,

Zeros

2020 Mathematics Sub-

ject Classification:

30A10, 30C10, 30C15

In this paper, we investigate a generalized class of complex polynomials of the form

$$G(z) = a_n z^n + \sum_{v=t}^n a_{n-v} z^{n-v}, \quad 1 \leq t \leq n,$$

whose zeros are constrained to lie within or on the boundary of the disk $|z| \leq k$, $k \leq 1$. We establish new Bernstein-type inequalities for such polynomials, extending and improving earlier results due to Jain [6], Aziz and Rather [4]. Several known inequalities follow as special cases, and the results have implications for the growth estimates and derivative bounds of analytic functions within specified domains.

Cite this article: Shahmoradi, M., & Bidkham, M. (2025). Generalization of certain well known polynomial inequalities. *Measure Algebras and Applications*, 3(1), 104–112. <http://doi.org/10.22091/maa.2026.14983.1051>

©The Author(s).

Doi:<http://doi.org/10.22091/maa.2026.14983.1051>

Publisher: University of Qom

1. Introduction

Let $p(z)$ be a polynomial of degree n . It satisfies the following inequalities,

$$(1.1) \quad \max_{|z|=1} |p'(z)| \leq n \max_{|z|=1} |p(z)|,$$

and

$$(1.2) \quad \max_{|z|=R} |p(z)| \leq R^n \max_{|z|=1} |p(z)|, \quad R > 1.$$

The inequality in (1.1) is widely recognized as Bernstein's inequality [5], while (1.2) is a straightforward consequence of the maximum modulus principle [9]. Equality in both cases occurs only when $p(z)$ is a constant multiple of z^n .

Restricting $p(z)$ to polynomials of degree n that do not vanish within $|z| < 1$, the following inequalities hold,

$$(1.3) \quad \max_{|z|=1} |p'(z)| \leq \frac{n}{2} \max_{|z|=1} |p(z)|,$$

and

$$(1.4) \quad \max_{|z|=R} |p(z)| \leq \frac{R^n + 1}{2} \max_{|z|=1} |p(z)|, \quad R > 1.$$

Inequality (1.3), conjectured by Erdős, was later proven by Lax [7], while (1.4) is attributed to Ankeny and Rivlin [1].

Expanding on (1.3), Malik [8] demonstrated that if $p(z)$ does not vanish within $|z| < k$, where $k \geq 1$, then

$$(1.5) \quad \max_{|z|=1} |p'(z)| \leq \frac{n}{1+k} \max_{|z|=1} |p(z)|.$$

Aziz and Dawood [3] refined (1.4), showing that if $p(z) \neq 0$ for $|z| < 1$, then

$$(1.6) \quad \max_{|z|=R} |p(z)| \leq \frac{R^n + 1}{2} \max_{|z|=1} |p(z)| - \frac{R^n - 1}{2} \min_{|z|=1} |p(z)|, \quad R > 1.$$

For polynomials $p(z)$ of degree n with all zeros inside $|z| \leq 1$, Aziz and Dawood [3] established the inequality

$$(1.7) \quad \max_{|z|=1} |p'(z)| \geq \frac{n}{2} \left(\max_{|z|=1} |p(z)| + \min_{|z|=1} |p(z)| \right).$$

Moreover, Malik [8] proved that if all zeros of $p(z)$ lie within $|z| < k$, where $k \leq 1$, then

$$(1.8) \quad \max_{|z|=1} |p'(z)| \geq \frac{n}{1+k} \max_{|z|=1} |p(z)|.$$

Jain [6], introducing the parameter β , generalized (1.7) and (1.6) with the following results.

Theorem 1.1. *If $p(z)$ is a polynomial of degree n , with all zeros inside the closed unit disk, then for $|\beta| \leq 1$,*

$$(1.9) \quad \begin{aligned} \max_{|z|=1} \left| zp'(z) + \frac{n\beta}{2} p(z) \right| &\geq \frac{n}{2} \left[(1 + \operatorname{Re}(\beta)) \max_{|z|=1} |p(z)| + \right. \\ &\quad \left. |(1 + \operatorname{Re}(\beta)) - |\beta|| \min_{|z|=1} |p(z)| \right]. \end{aligned}$$

Theorem 1.2. *If $p(z)$ is a polynomial of degree n , with no zeros in $|z| < 1$, then for every complex number $|\beta| \leq 1$, we have*

$$(1.10) \quad \begin{aligned} \max_{|z|=1} \left| p(Rz) + \beta \left(\frac{R+1}{2} \right)^n p(z) \right| &\leq \frac{1}{2} \left[\left\{ \left| R^n + \beta \left(\frac{R+1}{2} \right)^n \right| \right. \right. \\ &\quad \left. \left. + \left| 1 + \beta \left(\frac{R+1}{2} \right)^n \right| \right\} \max_{|z|=1} |p(z)| - \left\{ \left| R^n + \beta \left(\frac{R+1}{2} \right)^n \right| \right. \right. \\ &\quad \left. \left. - \left| 1 + \beta \left(\frac{R+1}{2} \right)^n \right| \right\} \min_{|z|=1} |p(z)| \right]. \end{aligned}$$

Aziz and Rather [4] extend (1.8), yielding,

Theorem 1.3. *For $p(z)$, a polynomial of degree n , with all zeros in $|z| \leq k$, where $k \leq 1$, and $|\beta| \leq 1$, we get*

$$(1.11) \quad \max_{|z|=1} \left| zp'(z) + \frac{n\beta}{1+k} p(z) \right| \geq \frac{n}{1+k} \{1 + \operatorname{Re}(\beta)\} \max_{|z|=1} |p(z)|.$$

This paper focuses on improving and generalizing the inequalities in (1.7), (1.9), (1.11) and related results.

Theorem 1.4. *If $p(z)$ is a polynomial of degree n with all its zeros located in $|z| \leq k$, where $|k| \leq 1$ and t -fold zeros at the origin, then the following inequality holds,*

$$(1.12) \quad \begin{aligned} \max_{|z|=1} \left| zp'(z) + \frac{n+tk}{1+k} \beta p(z) \right| &\geq \frac{n+tk}{1+k} \left[\{1 + \operatorname{Re}(\beta)\} \right. \\ &\quad \left. \max_{|z|=1} |p(z)| + \frac{1}{k^{n+tk}} \{ |1+k+\beta| - (1 + \operatorname{Re}(\beta)) \} \min_{|z|=k} |p(z)| \right]. \end{aligned}$$

Equality is achieved when $p(z) = (z+k)^n$ and $\beta \geq 0$. For $k = 1$, $t = 0$, we get the following improvement of the inequality (1.9).

Corollary 1.5. *If $p(z)$ is a polynomial of degree n with all zeros in $|z| \leq 1$, and for $|\beta| \leq 1$, then,*

$$(1.13) \quad \begin{aligned} \max_{|z|=1} \left| zp'(z) + \frac{n\beta}{2} p(z) \right| &\geq \frac{n}{2} \left[\{1 + \operatorname{Re}(\beta)\} \max_{|z|=1} |p(z)| \right. \\ &\quad \left. + \{ |2+\beta| - (1 + \operatorname{Re}(\beta)) \} \min_{|z|=1} |p(z)| \right]. \end{aligned}$$

Remark 1.6. *Setting $\beta = 0$ in Corollary 1.5 reduces inequality (1.13) to inequality (1.7).*

Remark 1.7. *Setting $t = 0$ in Theorem 1.4 reduces inequality (1.12) to Theorem 1.4 in [10].*

Next, we present the following theorem, which generalizes Theorem 1.2.

Theorem 1.8. *If $p(z)$ is a polynomial of degree n with no zeros within $|z| < k$, where $k \geq 1$, with t -fold zeros at the origin, then for $|\beta| \leq 1$ and $R > 1$, $R \geq r$, $rR \geq k^2$ and $|z| = 1$, the inequality,*

$$\begin{aligned} \max_{|z|=1} \left| p(Rk^2z) + \beta \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} p(rk^2z) \right| \\ \leq \frac{1}{2} \left[\left\{ k^{n+t} \left| R^n + \beta \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} \right| \right. \right. \\ \left. \left. + \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| \right\} \max_{|z|=k} |p(z)| \right. \\ \left. - \left\{ k^{n+t} \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| \right. \right. \\ \left. \left. - \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right| \right\} \min_{|z|=k} |p(z)| \right], \end{aligned}$$

is valid. This result is also optimal, and equality holds for $p(z) = \lambda k^n + \gamma z^n$, with $|\lambda| \geq |\gamma|$.

Remark 1.9. Setting $k = 1$, $r = 1$, $t = 0$, reduces Theorem 1.8 to Theorem 1.2, and if $k = 1$, $r = 1$, $t = 0$, $\beta = 0$ the inequality is simplified further to inequality (1.6).

2. Lemmas

We will need the following lemmas to prove our theorems.

Lemma 2.1. If $p(z)$ is a polynomial of degree n with all its zeros in $|z| \leq k$, where $k \leq 1$, with t -fold zeros at the origin, then for $R \geq r$, $rR \geq k^2$,

$$(2.1) \quad |p(Rz)| \geq \left(\frac{R}{r}\right)^t \left(\frac{R+k}{r+k}\right)^{n-t} |p(rz)|, \quad \text{for } |z| = 1.$$

This lemma is due to Zargar [11].

For $t = 0$, $r = 1$, Lemma 2.1 reduces to a result due to Aziz [2].

Lemma 2.2. If $p(z)$ is a polynomial of degree n with all its zeros in $|z| \leq k$, where $k \leq 1$, with t -fold zeros at the origin, then for $|\beta| \leq 1$ and $|z| = 1$,

$$(2.2) \quad \left|zp'(z) + \left(\frac{n+tk}{1+k}\right)\beta p(z)\right| \geq \frac{n+tk}{1+k} \{1 + \text{Re}(\beta)\} |p(z)|.$$

Proof. We know that if $p(z)$ is a polynomial of degree n with all zeros in $|z| \leq k$, where $k \leq 1$, with t -fold zeros at the origin [10], then

$$|zp'(z)| \geq \frac{n+tk}{1+k} |p(z)|.$$

Now by choosing an appropriate argument for β , we have,

$$\begin{aligned} \left|zp'(z) + \frac{n+tk}{1+k}\beta p(z)\right| &= |zp'(z)| + \left|\frac{n+tk}{1+k}\beta p(z)\right| \geq \\ &\geq \frac{n+tk}{1+k} |p(z)| + \left|\frac{n+tk}{1+k}\beta p(z)\right| = \frac{n+tk}{1+k} \{1 + |\beta|\} |p(z)| \\ &\geq \frac{n+tk}{1+k} \{1 + \text{Re}(\beta)\} |p(z)|. \end{aligned}$$

□

Lemma 2.3. If $p(z)$ is a polynomial of degree n with all its zeros in $|z| \leq k$, where $k \leq 1$, with t -fold zeros at the origin, then for $R \geq r$, $rR \geq k^2$, $|\beta| \leq 1$

$$(2.3) \quad \min_{|z|=1} \left|p'(z) + \frac{n+tk}{1+k}\beta p(z)\right| \geq \frac{n+tk}{k^{n+tk}} \left|1 + \frac{\beta}{1+k}\right| \min_{|z|=k} |p(z)|,$$

and

$$(2.4) \quad \begin{aligned} \min_{|z|=1} \left|p(Rz) + \beta \left(\frac{R+k}{r+k}\right)^{n-t} \left(\frac{R}{r}\right)^t p(rt)\right| &\geq \frac{1}{k^n} \left|R^n + \beta \left(\frac{R+k}{r+k}\right)^{n-t}\right| \\ &\geq \left(\frac{R}{r}\right)^t r^n \left|\min_{|z|=k} |p(z)|\right|, \quad R > 1. \end{aligned}$$

Proof. If $p(z)$ has a zero on $|z| = k$, then inequalities become trivial. Assuming instead that $p(z)$ has all zeros within $|z| < k$, and letting $m = \min_{|z|=k} |p(z)|$, where $m > 0$, then for any complex α with $|\alpha| < 1$,

$$\left|\frac{\alpha m z^{n+tk}}{k^{n+tk}}\right| < |p(z)|, \quad \text{for } |z| = k.$$

By Rouche's theorem, the polynomial $p(z) - \alpha m \left(\frac{z}{k}\right)^{n+tk}$, which has degree n , possesses all its zeros inside $|z| < k$ with t -fold zeros at the origin. From Lemma 2.2 (for $\beta = 0$), it follows that

$$\left|zp'(z) - \frac{\alpha m(n+tk)}{k^{n+tk}}z^{n+tk}\right| \geq \frac{n+tk}{1+k} \left(p(z) - \alpha m\left(\frac{z}{k}\right)^{n+tk}\right) \text{ for } |z|=1.$$

Therefore, for $|\beta| < 1$, we obtain

$$\begin{aligned} &zp'(z) - \frac{\alpha m(n+tk)}{k^{n+tk}}z^{n+tk} + \frac{n+tk}{1+k}\beta\left(p(z) - \alpha m\left(\frac{z}{k}\right)^{n+tk}\right) = \\ &zp'(z) + \frac{n+tk}{1+k}\beta p(z) - \frac{\alpha m(n+tk)}{k^{n+tk}}z^{n+tk}\left(1 + \frac{\beta}{1+k}\right) \neq 0 \text{ for } |z|=1. \end{aligned}$$

Now, by appropriately choosing the argument of α and allowing $|\alpha| \rightarrow 1$, we conclude that for $|z|=1$ and $|\beta| < 1$

$$\left|zp'(z) + \frac{n+tk}{1+k}\beta p(z)\right| \geq \frac{n+tk}{k^{n+tk}} \left|1 + \frac{\beta}{1+k}\right| m.$$

Now by continuity on applying Lemma 2.1 to the polynomial $p(z) - \alpha m\left(\frac{z}{k}\right)^{n+tk}$ and using the same argument as above, the inequality (2.4) follows. \square

Lemma 2.4. *If $p(z)$ is a polynomial of degree n , having no zeros in $|z| < k$ ($k \geq 1$), except t -fold zeros at the origin, then for $|\beta| \leq 1$, $R \geq r$, $rR \geq k^2$ and $|z|=1$,*

$$\begin{aligned} (2.5) \quad &\left|p(Rk^2z) + \beta\left(\frac{R}{r}\right)^t\left(\frac{Rk+1}{1+kr}\right)^{n-t}p(rk^2z)\right| \leq \\ &k^{n+t}\left|Q(Rz) + \beta\left(\frac{R}{r}\right)^t\left(\frac{Rk+1}{1+kr}\right)^{n-t}Q(rz)\right|, \end{aligned}$$

where $Q(z) = z^{n+t}p\left(\frac{1}{\bar{z}}\right)$.

Proof. Let $p(z) = z^t h(z)$. Then

$$Q(z) = z^{n+t}p\left(\frac{1}{\bar{z}}\right) = z^t h\left(\frac{1}{\bar{z}}\right) = z^t (z^{n-t}h\left(\frac{1}{\bar{z}}\right))$$

and by hypothesis, $p(z) \neq 0$ in $|z| < k$, $k \geq 1$, therefore, $Q(z)$ is the polynomial of degree n and has all its zeros in $|z| \leq \frac{1}{k}$ with t -fold zeros at the origin. As

$$|Q(z)| = \frac{1}{K^{n+t}}|p(k^2z)| \text{ for } |z| = \frac{1}{k},$$

the polynomial $k^{n+t}Q(z) - \alpha p(k^2z)$ of degree n has all its zeros in $|z| \leq \frac{1}{k}$ for $|\alpha| < 1$ and t -fold zeros at the origin. Therefore by Lemma 2.1 for $R > 1$ and $|z|=1$, we have

$$|k^{n+t}Q(Rz) - \alpha p(Rk^2z)| \geq \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{1+kr}\right)^{n-t} |k^{n+t}Q(rz) - \alpha p(rk^2z)|.$$

It follows that for $|\beta| < 1$ and $|z|=1$,

$$\begin{aligned} (2.6) \quad &T(z) = k^{n+t} \left\{ Q(Rz) + \beta \left(\frac{Rk+1}{1+rk}\right)^{n-t} \left(\frac{R}{r}\right)^t Q(rz) \right\} \\ &- \alpha \left\{ p(Rk^2z) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{1+rk}\right)^{n-t} p(rk^2z) \right\} \neq 0. \end{aligned}$$

This implies for $|\alpha| < 1$, $R > 1$ and $|z|=1$,

$$\begin{aligned} (2.7) \quad &\left|p(Rk^2z) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{1+rk}\right)^{n-t} p(rk^2z)\right| \leq \\ &k^{n+t} \left|Q(Rz) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{1+rk}\right)^{n-t} Q(rz)\right|. \end{aligned}$$

If inequality (2.7) is not true, then there exists a point $z = z_0$ with $|z_0| = 1$ such that

$$\begin{aligned} & \left| p(Rk^2 z_0) + \beta \left(\frac{Rk+1}{kr+1} \right)^{n-t} \left(\frac{R}{r} \right)^t p(k^2 r z_0) \right| > \\ & k^{n+t} \left| Q(Rz_0) + \beta \left(\frac{Rk+1}{kr+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz_0) \right|. \end{aligned}$$

We have

$$\alpha = \frac{k^{n+t} \left\{ Q(Rz_0) + \beta \left(\frac{Rk+1}{kr+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz_0) \right\}}{p(Rk^2 z_0) + \beta \left(\frac{Rk+1}{kr+1} \right)^{n-t} p(rk^2 z_0)}.$$

Then $|\alpha| < 1$ and with this choice of α , we have from (2.6), $T(z_0) = 0$ for $|z_0| = 1$. But this contradicts the fact that $T(z) \neq 0$ for $|z| = 1$. This completes the proof of Lemma 2.4. \square

Lemma 2.5. *If $p(z)$ is a polynomial of degree n , with t -fold zeros at the origin, then for $|\beta| \leq 1$, $R > r$, $rR \geq k^2$ and $|z| \geq 1$,*

$$\begin{aligned} & \left| p(Rz) + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rz) \right| \leq \\ (2.8) \quad & \frac{|z^n|}{k^n} \left| R^n + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right| \max_{|z|=k \leq 1} |p(z)|. \end{aligned}$$

Proof. Let $Q(z) = z^n p\left(\frac{1}{\bar{z}}\right)$ and $M = \max_{|z|=\frac{1}{k} \leq 1} |Q(z)|$. A direct application of Rouché's theorem shows that for every α with $|\alpha| > 1$, the polynomial $G(z) = Q(z) - \alpha M$ does not vanish in $|z| < \frac{1}{k}$ and $G^*(z) = z^n G\left(\frac{1}{\bar{z}}\right)$ has all its zeros in $|z| \leq k$ with t -fold zeros at the origin. Applying Lemma 2.1 to the polynomial $G^*(z)$, we get for $|z| = 1$ and $R > 1$

$$(2.9) \quad |G^*(Rz)| \geq \left(\frac{R}{r} \right)^t \left(\frac{R+k}{r+k} \right)^{n-t} |G^*(rz)|.$$

Using Rouché's theorem again, it follows from (2.9) that for every β with $|\beta| < 1$ all the zeros of polynomial $G^*(Rz) + \beta \left(\frac{R}{r} \right)^t \left(\frac{R+k}{r+k} \right)^{n-t} G^*(rz)$ lie in $|z| < 1$.

Replacing $G^*(z)$ by $p(z) - \bar{\alpha} M z^n$, we conclude that all the zeros of

$$\begin{aligned} S(z) = & p(Rz) + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rz) - \\ & \bar{\alpha} \left\{ R^n z^n M + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t M z^n r^n \right\} \end{aligned}$$

lie in $|z| < 1$ for $R > 1$, $k \leq 1$, $|\alpha| > 1$ and $|\beta| < 1$. This implies for $|\beta| < 1$, $R > 1$, $k \leq 1$ and $|z| \geq 1$,

$$\left| p(Rz) + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rz) \right| \leq |z^n| M \left| R^n + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right|.$$

Because if this is not true, then there is a point z_0 with $|z_0| \geq 1$, such that

$$\left| p(Rz_0) + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rz_0) \right| > |z_0^n| M \left| R^n + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right|.$$

We have

$$\bar{\alpha} = \frac{p(Rz_0) + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rz_0)}{z_0^n M \left\{ R^n + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right\}},$$

then $|\alpha| > 1$ and with this choice of α , we have $S(z_0) = 0$ for $|z_0| \geq 1$. But this contradicts the fact that $S(z) \neq 0$ for $|z| \geq 1$. Thus for $|\beta| < 1$, $R > r$, $rR \geq k^2$ and $|z| \geq 1$,

$$\left| p(Rz) + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rz) \right| \leq |z^n| M \left| R^n + \beta \left(\frac{R+k}{r+k} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right|,$$

replacing M by $\frac{1}{k^n} \max_{|z|=k} |p(z)|$, we get inequality (2.8). \square

Lemma 2.6. *If $p(z)$ is a polynomial of degree n , then for $|\beta| \leq 1$, $|z| = 1$ and $R > r$, $Rr \geq k^2$, $k \geq 1$ with t -fold zeros at the origin*

$$(2.10) \quad \begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rk^2 z) \right| + k^{n+t} \left| Q(Rz) + \beta \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} Q(rz) \right| \\ & \leq \left\{ k^{n+t} \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| + \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| \right\} M, \end{aligned}$$

where $Q(z) = z^n p\left(\frac{1}{\bar{z}}\right)$, $M = \max_{|z|=k} |p(z)|$.

Proof. If $M = \max_{|z|=k} |p(z)|$, then $|p(z)| \leq M$ for $|z| = k$. Therefore, for a given complex number λ with $|\lambda| > 1$, it follows by Rouché's theorem that the polynomial $w(z) = p(z) + \lambda M$ does not vanish in $|z| < k$. Hence from Lemma 2.4, for $|\beta| \leq 1$, $|z| = 1$ and $rR \geq k^2$, $R > r$, we get

$$(2.11) \quad \begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} p(rk^2 z) + \lambda M \left(1 + \beta \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} \right) \right| \leq \\ & k^{n+t} \left| Q(Rz) + \bar{\lambda} M R^n z^n + \beta \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} (Q(rz) + \bar{\lambda} M z^n r^n) \right|, \end{aligned}$$

choosing argument of λ in the right hand side of (2.11) such that

$$\begin{aligned} & \left| Q(Rz) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz) + \bar{\lambda} M z^n \left\{ R^n + \left(\frac{R}{r} \right)^t \left(\frac{Rk+1}{rk+1} \right)^{n-t} r^n \right\} \right| \\ & = M |\lambda| |z^n| \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right| - \left| Q(Rz) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz) \right|, \end{aligned}$$

by Lemma 2.5, we get

$$\begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rk^2 z) \right| - M |\lambda| \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| \leq \\ & M k^{n+t} |\lambda| |z^n| \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| - k^{n+t} \left| Q(Rz) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz) \right|. \end{aligned}$$

Equivalently

$$\begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rk^2 z) \right| \\ & + k^{n+t} \left| Q(Rz) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz) \right| \\ & \leq M |\lambda| \left\{ k^{n+t} \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| + \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| \right\}. \end{aligned}$$

Finally letting $|\lambda| \rightarrow 1$, we get inequality (2.10) and this completes the proof of Lemma 2.6. \square

3. Proof of the theorems

Proof of Theorem 1.4. If $p(z)$ has a zero on $|z| = k$, inequality (1.12) reduces to

$$(3.1) \quad \max_{|z|=1} \left| z p'(z) + \frac{n+tk}{1+k} \beta p(z) \right| \geq \frac{n+tk}{1+k} \left\{ (1 + \operatorname{Re}(\beta)) \max_{|z|=1} |p(z)| \right\},$$

which is straightly followed from Lemma 2.2. So we suppose that $p(z)$ has all its zeros in $|z| < k$, then $m = \min_{|z|=k} |p(z)| > 0$. Therefore if α is a complex number such that $|\alpha| < 1$, then it follows

by Rouche's theorem that the polynomial $p(z) - \alpha m \left(\frac{z}{k}\right)^{n+tk}$ has all its zeros in $|z| < k$, $k \leq 1$, with t -fold zeros at the origin.

Applying Lemma 2.2, we get for $|z| = 1$

$$(3.2) \quad \begin{aligned} & \left| zp'(z) - \alpha m(n+tk) \left(\frac{z}{k}\right)^{n+tk} + \frac{n+tk}{1+k} \beta \left(p(z) - \alpha m \left(\frac{z}{k}\right)^{n+tk}\right) \right| \geq \\ & \frac{n+tk}{1+k} (1 + \operatorname{Re}(\beta)) \left| p(z) - \alpha m \left(\frac{z}{k}\right)^{n+tk} \right|. \end{aligned}$$

Equivalently

$$\begin{aligned} & \left| zp'(z) + \frac{n+tk}{1+k} \beta p(z) - \alpha m(n+tk) \left(\frac{z}{k}\right)^{n+tk} \left(1 + \frac{\beta}{1+k}\right) \right| \\ & \geq \frac{n+tk}{1+k} (1 + \operatorname{Re}(\beta)) \left| p(z) - \alpha m \left(\frac{z}{k}\right)^{n+tk} \right|. \end{aligned}$$

By Lemma 2.3 (inequality (2.3)), we have

$$\min_{|z|=1} \left| p'(z) + \frac{n+tk}{1+k} \beta p(z) \right| \geq \frac{n+tk}{k^{n+tk}} \left| 1 + \frac{\beta}{1+k} \right| \min_{|z|=k} |p(z)|.$$

By choosing α suitable argument of α and letting $|\alpha| \rightarrow 1$, for $|z| = 1$, we get

$$(3.3) \quad \begin{aligned} & \left| zp'(z) + \frac{n+tk}{1+k} \beta p(z) \right| - \frac{m(n+tk)}{k^{n+tk}} \left| 1 + \frac{\beta}{1+k} \right| \geq \\ & \frac{n+tk}{1+k} (1 + \operatorname{Re}(\beta)) \left\{ |P(Z)| - \frac{m}{k^{n+tk}} \right\}. \end{aligned}$$

From which we can obtain Theorem 1.4.

Proof of Theorem 1.8. If $p(z)$ has a zero on $|z| = k$, then by Lemma 2.4, we have for $|z| = 1$,

$$\begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{rk+1}\right)^{n-t} p(rk^2 z) \right| \leq \\ & k^{n+t} \left| Q(Rz) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{rk+1}\right)^{n-t} Q(rz) \right|. \end{aligned}$$

On applying Lemma 2.6, we get the conclusion of Theorem 1.8. Therefore we assume that $p(z)$ has all its zeros in $|z| > k$ with t -fold zeros at the origin. Let $m = \min_{|z|=k} |p(z)|$, then $m \leq |p(z)|$, for $|z| = k$. If α is a complex number such that $|\alpha| < 1$, then it follows from Rouche's theorem that the polynomial $p_1(z) = p(z) - \alpha m$ having no zeros in $|z| < k$. Hence by Lemma 2.4, we get for $|z| < 1$

$$\begin{aligned} & \left| p_1(Rk^2 z) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{rk+1}\right)^{n-t} p_1(rk^2 z) \right| \leq k^{n+t} \\ & \left| Q_1(Rz) + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{rk+1}\right)^{n-t} Q_1(rz) \right|, \end{aligned}$$

where $Q_1(z) = z^{n+t} p\left(\frac{1}{\bar{z}}\right) - z^{n+t} \alpha m$. Equivalently

$$\begin{aligned} & \left| \left\{ p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1}\right)^{n-t} \left(\frac{R}{r}\right)^t p(rk^2 z) \right\} - \alpha m \left\{ 1 + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{rk+1}\right)^{n-t} \right\} \right| \leq \\ & k^{n+t} \left| \left\{ Q(Rz) + \beta \left(\frac{Rk+1}{rk+1}\right)^{n-t} \left(\frac{R}{r}\right)^t Q(rz) \right\} - m k^{n+t} \alpha z^n \left\{ R^n + \beta \left(\frac{Rk+1}{rk+1}\right)^{n-t} \left(\frac{R}{r}\right)^t r^n \right\} \right|, \end{aligned}$$

or for $|z| = 1$

$$(3.4) \quad \begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1}\right)^{n-t} \left(\frac{R}{r}\right)^t p(rk^2 z) \right| - |\alpha| m \left| 1 + \beta \left(\frac{R}{r}\right)^t \left(\frac{Rk+1}{rk+1}\right)^{n-t} \right| \leq \\ & k^{n+t} \left| \left\{ Q(Rz) + \beta \left(\frac{Rk+1}{rk+1}\right)^{n-t} \left(\frac{R}{r}\right)^t Q(rz) \right\} - m k^{n+t} |\alpha| \left\{ R^n + \beta \left(\frac{Rk+1}{rk+1}\right)^{n-t} \left(\frac{R}{r}\right)^t r^n \right\} \right|. \end{aligned}$$

On applying lemma 2.3 (inequality (2.4)) to the polynomial $Q(z)$ and rewriting (3.4), we get for $|z| = 1$

$$\begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rk^2 z) \right| - |\alpha| m \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| \leq \\ & k^{n+t} \left| Q(Rz) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz) \right| - mk^{n+t} |\alpha| \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right|. \end{aligned}$$

As $|\alpha| \rightarrow 1$, we obtain for $|z| = 1$

$$\begin{aligned} & \left| p(Rk^2 z) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t p(rk^2 z) \right| - k^{n+t} \left| Q(Rz) + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t Q(rz) \right| \\ & \leq m \left\{ \left| 1 + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t \right| - k^{n+t} \left| R^n + \beta \left(\frac{Rk+1}{rk+1} \right)^{n-t} \left(\frac{R}{r} \right)^t r^n \right| \right\}. \end{aligned}$$

Now by Lemma 2.6, we get the derived result and this completes the proof of Theorem 1.8.

References

- [1] Ankeny, N.C., & Rivlin, T.J. (1955). On a theorem of S.Bernstein. *Pacific J. Math*, 5, 849–851.
- [2] Aziz, A. (1987). Growth of polynomials whose zeros are within or outside a circle. *Bulletin of the Australian Mathematical Society*, 35(2), 247–256.
- [3] Aziz, A., & Dawood, Q.M. (1988). Inequalities for a polynomial and its derivative. *Journal of Approximation Theory*, 54(3), 306–313.
- [4] Aziz, A., & Rather, N.A. (2004). Some compact generalizations of Bernstein-type inequalities for polynomials. *Mathematical Inequalities and Applications*, 7(3), 393–403.
- [5] Bernstein, S. (1930). Sur la limitation des dérivées des polynômes. *C. R. Acad. Sc. Paris*, 190, 338–340.
- [6] Jain, V.K. (2000). Inequalities for a polynomial and its derivative. *Proc. Indian Acad. Sci*, 110, 137–146.
- [7] Lax, P.D. (1944). Proof of a conjecture of P.Erdos on the derivative of a polynomial. *Bull. Amer. Math. Soc*, 50, 509–513.
- [8] Malik, M.A. (1969). On the Derivative of a Polynomial. *Journal of the London Mathematical Society*, 1, 57–60.
- [9] Polya, G., & Szego, G. (1976). Problems and Theorems in Analysis. *Springer-Verlag*.
- [10] Soleiman Mezerji, H.A., Bidkham, M., & Zireh, A. (2012). Bernstein type inequalities for polynomial and its derivative. *Journal of Advanced Research in Pure Mathematics*, 4, 26–33.
- [11] Zargar, B.A. (2014). On an inequality of Paul Turan. *Matematički Vesnik*, 66(2), 148–154.