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1. Preliminaries

Throughout this paper, S denotes a locally compact Hausdorff topological semigroup. Let
S be a locally compact Hausdorff topological foundation semigroup. The space of all bounded
complex regular Borel measures on S is denoted by M(S). This space with the convolution
multiplication ∗ and the total variation norm defines a Banach algebra. The space of all measures
µ ∈ M(S) for which that mappings x 7→ δx ∗ |µ| and x 7→ |µ| ∗ δx from S into M(S) are
weakly continuous, is denoted by Ma(S), where δx denotes the Dirac measure at x. The locally
compact semigroup S is called a foundation semigroup if S coincides with the closure of the set
∪{supp(µ) : µ ∈Ma(S)}.

Note that if S is a foundation semigroup with identity, then Ma(S) has a bounded approximate
identity, see [7]. Recall that Ma(S) is a two-sided closed L-ideal of M(S) from [7], with the norm

∥µ∥ =

∫
s
d|µ|

and the convolution product∫
S
f(x)d(µ ∗ ν)(x) =

∫
S

∫
S
f(xy)dµ(x)dν(y).

Let us point out that the second dual Ma(S)
∗∗ of Ma(S) is a Banach algebra with the first Arens

product ⊙ defined by the equations

(F ⊙H)(f) = F (Hf)

(Hf)(µ) = H(fµ)

(fµ)(ν) = f(µ ∗ ν)

for all F,H ∈Ma(S)
∗∗, f ∈Ma(S)

∗, and µ, ν ∈Ma(S).
Let LUC(S) be the set of all left uniformly continuous functions on S; recall that a function

g ∈ Cb(S) is called left uniformly continuous if the mapping x 7→x g from S into Cb(S) is
continuous, where Cb(S) denotes the space of all bounded continuous complex-valued functions
on S; as usual C0(S) denotes the space of functions in Cb(S) vanishing at infinity and Cc(S)

denotes its subspace of functions with compact support.
The set of all complex-valued bounded functions g on S that are Ma(S)-measurable; that is,

µ-measurable for all µ ∈ Ma(S) is denoted by L∞(S,Ma(S)). For every g ∈ L∞(S,Ma(S)),
define

∥g∥∞ = sup{∥g∥∞,|µ| : µ ∈Ma(S)},

where ∥.∥∞,|µ| denotes the essential supremum norm with respect to |µ|. Observe, L∞(S,Ma(S))

with the complex conjugation as involution, the pointwise operations and the norm ∥.∥∞ is a
commutative C∗-algebra. The duality

τ(g)(µ) := µ(g) =

∫
S
gdµ

defines a linear mapping τ from L∞(S,Ma(S)) into Ma(S)
∗. It is well-known that if S is a

foundation semigroup with identity, then τ is an isometric isomorphism of L∞(S,Ma(S)) onto
Ma(S)

∗.
Let X be a subspace of L∞(S,Ma(S)) which is left and right translations invariant; that is,

sg and gs are in X for all g ∈ X and s ∈ S, where

(sg)(t) = g(st) and (gs)(t) = g(ts)

for all t ∈ S.
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Several interesting isomorphism theorems have already been proved for various convolution
algebras over groups Gi for (i = 1, 2). First Kawada in [6] showed that if we have a bipositive
algebra isomorphism between group algebras, then the underlying locally compact groups must
be isomorphic. In [4], H. Farhadi proved similar results to Kawada’s result for other Banach
algebras related to locally compact groups by first showing that any such bipositive algebra
isomorphism must in fact be an isometric isomorphism.

In this paper, as a generalization of these theorems, we show that the existence of a bipositive
isomorphism between semigroup algebras and their second duals implies that their underlying
locally compact semigroups must be isomorphic.

2. Bipositive isomorphisms of semigroup algebras

In this section, we prove similar results to Wendel’s result for semigroup algebras and we show
that the existence of a bipositive algebra isomorphism between the measure algebras M(S1) and
M(S2) implies that their underlying locally compact semigroups must be isomorphic. Also we
give a complete description of bipositive algebra isomorphisms between semigroup algebras.

Definition 2.1. Let S be a locally compact semigroup. Then
(1) The function f ∈ C0(S) is called positive if for every x ∈ S, f(x) ≥ 0;
(2) The measure µ ∈M(S) is called positive if for every positive f ∈ C0(S), ⟨µ, f⟩ ≥ 0;
(3) The function f ∈ LUC(S) is called positive if f(x) ≥ 0, for all x ∈ S;
(4) The functional m ∈ LUC(S)∗ is positive if ⟨m, f⟩ ≥ 0, for every positive function f in

LUC(S);
(5) Let A and B be ordered vector spaces. An operator T : A −→ B is called positive if for

each positive element a ∈ A, T (a) ≥ 0 in B. The operator T is called bipositive if T is
a bijection and both T and T−1 are positive operators.

In the following theorem, we prove Wendel’s result for semigroup algebras.

Theorem 2.2. Let S1 and S2 be two locally compact semigroups and T be a bipositive isomor-
phism of Ma(S1) onto Ma(S2). Then T is an isometry.

Proof. T and T−1 are both order-preserving operators

µ ≤ ν, T (µ) ≤ T (ν), µ, ν ∈M(S1)

and therefore are bounded. So the ratio ∥Tµ∥/∥µ∥ is bounded as µ ̸= 0,∞, over Ma(S1). If
µ ∈Ma(S1)

+ it follows by induction that ∥µn∥ = ∥µ∥n.
Since µ is positive and T is bipositive so Tµ is also positive and T (µn) = (Tµ)n, it follows

that for fixed positive µ ̸= 0 the retio (∥Tµ∥/∥µ∥)n is bounded above and below for n ≥ 0.
Consequently T is isometric at least for the positive elements of Ma(S1).

Now if µ ∈ M(S1) and µ = µ+ + µ−, where µ+ and µ− denote respectively the positive and
negative parts of µ, then

∥µ∥ = ∥µ+ + µ−∥

= ∥µ+∥+ ∥µ−∥

= ∥Tµ+∥+ ∥Tµ−∥ ≥ ∥Tµ+ + Tµ−∥

= ∥Tµ∥.

With a similar argument for T−1, we obtain the result

∥µ∥ = ∥T−1Tµ∥ ≤ ∥Tµ∥ ≤ ∥µ∥,
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then T is an isometry. □

Lemma 2.3. Let S be a locally compact semigroup. Then a left multiplier Lµ : ν −→ µ ∗ ν on
Ma(S) is positive if only if µ is positive.

Proof. If µ ∈M(S) is positive, then it is clear that left multiplier Lµ(ν) = µ∗ν is positive. Now,
we consider the case that Lµ is positive, by the above conclusion, we have Lµ(νi) −→ µ where
(νi) is a net bounded approximate identity for Ma(S). Finally, as (νi) is positive, so Lµ(νi) is
positive and consequently µ is positive. □

Recall that a locally compact semigroup S is said to be left compactly cancellative if C−1D

is a compact subset of S for all compact subsets C and D of S, where

C−1D = {x ∈ S : cx ∈ D for some c ∈ C}.

Right compactly cancellative locally compact semigroups are defined similarly. A semigroup
which is both left and right compactly cancelletive is called compactly cancellative.

Suppose that A is a Banach algebra, for any a, b ∈ A, we define

L(ab) = L(a)b

R(ab) = aR(b)

where operators L and R are called multipliers, also M(A) denotes the set of multipliers on A.

Theorem 2.4. Suppose that S is a locally compact cancellative foundation semigroup with
identity. Then the left multiplier algebra of Ma(S) is bipositively and algebraically isomorphic
to M(S).

Proof. Suppose that T :M(S) −→ M(Ma(S)) such that T (µ) = Lµ. From [8], we know that if
S is a compactly cancellative foundation semigroup with identity, thus the multiplier algebra of
Ma(S) is isomorphic with M(S).

We recall that if T is a left multiplier on Ma(S) and let a net {να} from Ma(S), then the set
{T (να)} is a bounded subnet of M(S). So there exists a subnet {ναi} of {να} and µ ∈ M(S)

for which that
T (ναi)

w∗
−→ µ.

Now if ν ∈Ma(S), then

T (ν ∗ ναi)
w∗
−→ T (ν), T (ν ∗ ναi) = T (ναi) ∗ ν

w∗
−→ µ ∗ ν

consequently T (ν) = ν ∗ µ, we have that T is algebra isomorphism. Finally, Lemma 2.3 proves
that T is bipositive. □

Remark 2.5. Let S be a locally compact foundation semigroup with identity e. The right
annihilator of Ma(S) in M(S) is zero.

Proof. Let µα be a bounded approximate identity for Ma(S). We know that µα → δe in ω∗-
topology. Thus

µ = δe ∗ µ = ω∗ − lim(µα ∗ µ) = 0.

□

In the following theorem, we give a generalization of Kawada’s result in [6], for locally compact
semigroups with identity.
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Theorem 2.6. Let S1 and S2 be locally compact semigroups and T be a bipositive algebra
isomorphism from M(S1) onto M(S2). Then the locally compact semigroups S1 and S2 are
isomorphic, and also there exists a continuous character χ : S1 → T where T is the circle
semigroup and an isomorphism ψ : S1 → S2 of the locally compact semigroups S1 and S2 such
that for each x ∈ S1, we have

T (δx) =

∫
ψ
χ(t)d(δx(t)) = χ(x)δϕ(x).

Proof. Suppose that T :M(S1) −→M(S2) is a bipositive algebra isomorphism. By [1], Theorem
4.3, T and T−1 are bounded operators. Suppose that x in S1 is given. Since δx is a positive
measure and T is a positive operator, T (δx) is a positive measure. Also since T is an algebra
isomorphism, it preserves the extreme points of the unit ball, by [3], Theorem V.8.4, for each
x ∈ S1, there exist an isomorphism ψ(x) : S1 → S2 and a continuous character χ(x) : S1 → T
such that

(2.1) T (δx) = χ(x)δψ(x).

Since T is an algebra isomorphism and multiplicative and δx ∗ δy = δxy for each x, y ∈ S1, we
can see that ψ : S −→ S2 and χ : S1 −→ T via (2.1) are multiplicative,

T (δxy) = T (δx ∗ δy) = T (δx) ∗ T (δy).

Suppose that (xα) is a net in S1 that is convergent to es1 , the identity element of S1. The map
S1 7→M(S1) : x 7→ δx is strong operator continuous, for every µ ∈Ma(S1),

(2.2) δxα ∗ µ ∥.∥−→ µ.

Since T is bounded, we have
T (δxα ∗ µ) ∥.∥−→ T (µ),

in M(S2). Hence

(2.3) T (δxα) ∗ T (µ)
∥.∥−→ T (µ).

Let U be a precompact neighborhood of es1 . Without loss of generality we can assume xi ∈ U ,
for all i. Then

∥T (δxα)∥ ≤ ∥T∥∥δxα∥ ≤ ∥T∥.

Hence, the net (T (δxα)) is bounded in M(S2), and so it has a subnet (T (δxαi
)) converging

weak-star to some µ ∈M(S2). Then by (2.3), we have that

ν ∗ T (µ) = T (ψ).

Applying T−1 to the two sides of this equation yields

T−1(ν) ∗ µ = ψ.

Hence by Remark 2.5, T−1(ν) = δes1 , or equivalently T (δes1 ) = ν. Hence

(2.4) ν = χ(es1)(δψ(es1 )) = χ(es1)(δes2 ).

The equation (2.4), in particular, shows that χ(xi) → χ(es1) and ψ(xi) → ψ(es1). Hence, ψ and
χ are continuous. To prove that ψ is a bijection, we note that corresponding to T−1, there exist
β : S2 → (0,∞) and ϕ : S2 → S1 such that

T−1(δy) = β(y)δϕ(y) (y ∈ H).
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It follows from the equations T (T−1(δy)) = δy and T−1(T (δx)) = δx that ϕ is a bijection,
ϕ = ψ−1 and β(ψ(x)) = 1 \ χ(x) that χ(x) ̸= 0, for all x ∈ S1. By symmetry, ϕ is continuous.
Therefore ψ is an isomorphism of topological semigroups from S1 onto S2.

Now, we show that for every x ∈ S1 we have

(2.5) ∥T−1∥−1 ≤ χ∥δψ(x)∥ ≤ ∥T∥.

Since T is a bounded operator, for all x ∈ S1, we have

χ(x) = χ(x)∥δψ(x)∥ = ∥T (δ(x))∥ ≤ ∥T∥∥δ(x)∥ = ∥T∥.

A similar argument using T−1 shows that

∥T−1∥−1 ≤ χ(x)∥δψ(x)∥.

Thus we have established the inequalities in (2.5). □

Theorem 2.7. Let T be a bipositive algebra isomorphism from M(S1) onto M(S2). Define the
mapping Kχ,ψ : C0(S2) → C0(S1) where Kχ,ψ(f) = χ.f ◦ ψ. Then T = K∗

χ,ψ.

Proof. By Theorem 2.6, there exist an isomorphism ψ of locally compact semigroups S1 onto
S2, a continuous character χ : S1 → T and positive constants M and m such that

(2.6) T (δx) = χ(x)δϕ(x) (m ≤ χ(x) ≤M).

For each x ∈ S1, letting µ ∈M(S1) be such that ∥µ∥ = 1, it suffices to show that T (µ) = K∗
χ,ψ(µ),

where the dual mapping Tχ,ψ = K∗
χ,ψ from M(S1) onto M(S2) is also a bounded bipositive linear

isomorphism. By Theorem 2.6, Tχ,ψ(δx) = χ(x)δψ is multiplicative on point masses on M(S1).
We note that the linear span of point masses is weak-star dense in M(S1), the convolution
product is separately weak-star continuous and Tχ,ψ = K∗

χ,ψ is weak-star continuous. Clearly,
Tχ,ψ is invertible with Tχ,ψ−1 = Tβ,ψ−1 , where β = 1 \ χ ◦ ψ−1. Therefore Tχ,ψ is a bipositive
algebra isomorphism. Taking µ in M(S1) with norm 1, we can find a net (µβ) in M(S1) such
that

(2.7) lim ∥µβ ∗ ν − µ ∗ ν∥ = 0 (ν ∈Ma(S1)).

By (2.6), T (µβ) = K∗
χ,ψ(µβ) for each β. We claim that T (µβ)

w∗
→ T (µ) in M(S2). To see this

let µ′ be a weak-star limit point of T (µβ) in M(S2) and let µβ(i) be a subnet of µβ such that
T (µβ(i))

w∗
→ µ′. Observe that it suffices now to show that µ′ = T (µ) to simplify notation, we can

assume that T (µβ)
w∗
→ µ′. Let ν ∈Ma(S1) be fixed. Then

∥T (µβ) ∗ T (ν)− T (µ) ∗ T (ν)∥ → 0

by (2.7).
Since M(S1) = C0(S1)

∗ is a dual Banach algebra (multiplication in M(S2) is separately weak-
star continuous), straightforward calculations show that C0(S2) is a submodule of the dual Ba-
nach M(S2)-module M(S2)

∗ = C0(S2)
∗∗. Therefore for k ∈ C0(S2), T (ν).k ∈ M(S2).C0(S2) ⊆

C0(S2) and hence

⟨T (µ) ∗ T (ν), k⟩ = lim⟨T (µβ) ∗ T (ν), k⟩

= lim⟨T (µβ), T (ν).k⟩

= ⟨µ′, T (ν).k⟩

= ⟨µ′ ∗ T (ν), k⟩.
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Thus
T (µ ∗ ν) = T (µ) ∗ T (ν) = µ′ ∗ T (ν)

and so

(2.8) µ ∗ ν = T−1(µ′) ∗ ν, (ν ∈Ma(S1)).

Let (νi) be an approximate identity, then by (2.8), we have

(2.9) µ ∗ νi = T−1(µ′) ∗ νi.

Also, clearly we can see that νi → δes in the weak-star topology of M(S1), by taking the weak-
star limit in (2.9) we that µ = T−1(µ′) and therefore T (µ) = µ′. This proves the claim. Finally,
because K∗

χ,ψ is weak-star continuous and T (µβ)
w∗
→ T (µ), the equality T (µβ) = K∗

χ,ψ(µβ) yields

T (µ) = w∗ − limT (µβ) = w∗ − limK∗
χ,ψ(µβ) = K∗

χ,ψ(µ).

□

Corollary 2.8. Suppose that S1 and S2 are locally compact cancellative foundation semigroups.
If T is a bipositive algebra isomorphism from M(S1) onto M(S2), then T is an isometry.

Proof. By Theorem 2.6 and Theorem 2.7, there exists an isomorphism of locally compact semi-
groups ψ from S1 onto S2 such that T = K∗

ψ. It is readily seen that Kψ is an isometry and
therefore T is an isometric algebra isomorphism. □

Theorem 2.9. If T is a bipositive algebra isomorphism from Ma(S1) onto Ma(S2), then there
exist an isomorphism of locally compact semigroup ψ : S1 → S2 and a continuous character
χ : S1 → T such that

T (δx) = χ(x)δϕ(x).

Proof. Suppose that T is a bipositive algebra isomorphism from Ma(S1) onto Ma(S2). By Theo-
rem 2.2, T is an isometric isomorphism from Ma(S1) onto Ma(S2) and according to Theorem 2.4,
T : M(Ma(S1)) → M(Ma(S2)) is an isometric isomorphism, so T is an isometric isomorphism
from M(S1) onto M(S2), therefore, by Theorem 2.6, the proof is complete. □

In the following theorem, we have obtained a generalization of a well-known result of Kawada
[6] and Wendel [9], for locally compact groups to a more general setting of locally compact
foundation semigroups. Indeed, we prove that if T is a bipositive algebra isomorphism from
Ma(S1) onto Ma(S2), then T is an isometry. So S1 and S2 are isomorphic.

Theorem 2.10. If T is a bipositive algebra isomorphism from Ma(S1) onto Ma(S2), where S1
and S2 are locally compact cancellative foundation semigroups, then there exist a continuous
character χ : S1 → T and an isomorphism ψ : S1 → S2 of the locally compact semigroups S1
and S2 such that for µ ∈Ma(S1)

T (µ) = c(χ ◦ ψ−1)µ ◦ ψ−1.

Proof. Suppose that T is a bipositive algebra isomorphism from Ma(S1) onto Ma(S2), we show
that for any µ ∈M(S1),

Lµ :Ma(S1) −→Ma(S2)

ν 7→ T (µ ∗ T−1(ν))

where ν ∈ Ma(S2), is a multiplier. According to the above theorem, there exists a measure
˜T (µ) ∈M(S2) for which

Lµ(ν) = ˜T (µ) ∗ ν.
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If µ ∈ M(S)+, then by Lemma 2.3, Lµ is a positive multiplier, so ˜T (µ) ∈ M(S2)
+. Also,

Theorem 2.4 shows that Lµ is a bipositive algebra isomorphism from M(S1) onto M(S2). In
particular, it is easy to show that T̃ : µ −→ T̃ (µ) is a bipositive isomorphism from M(S1) onto
M(S2). Consequently by Theorem 2.6 there exist a continuous character χ : S1 → T and an
isomorphism ψ : S1 → S2 of the locally compact semigroups S1 and S2. Define

U :Ma(S1) −→Ma(S2)

U(ν) = c(χ ◦ ψ−1)ν ◦ ψ−1

where c is constant. It is readily seen that U is a bipositive algebra isomorphism. Now we prove
that

TU−1ryUT
−1 = ry

which ryf(x) = f(xy). Since

c−1χ̄(cχ ◦ ψ−1T−1(ν) ◦ ψ−1) ◦ ψ)(z) =c−1χ̄(z)(cχ ◦ ψ−1T−1(ν) ◦ ψ−1)(ψ(z))

=(c−1χ̄(z))(cχ(z))T−1(ν)(z)

=T−1(ν)(z)

we have

TU−1ryUT
−1(ν)(x) =TU−1ry(cχoψ

−1T−1(ν) ◦ ψ−1)(x)

=TU−1(cχ ◦ ψ−1T−1(ν) ◦ ψ−1)(xy)

=T (c−1χ̄(cχ ◦ ψ−1T−1(ν) ◦ ψ−1) ◦ ψ)(xy)

=T (T−1ν)(xy) = ν(xy) = ryν(x).

So TU−1 is a left multiplier. Note that the left multiplier TU−1 is a bipositive invertible left
multiplier, the measure µ is also positive because TU−1 is bipositive thus µ−1 is positive. On
the other hand µ is invertible because TU−1 is an invertible left multiplier. So TU−1 is the
identity operator on Ma(S2), and T = U . □

Corollary 2.11. If T is a bipositive algebra isomorphism from Ma(S1) onto Ma(S2), where S1
and S2 are locally compact cancellative foundation semigroups, then T is an isometry.

Proof. By Theorem 2.6 and Theorem 2.10, there exists an isomorphism ψ from S1 onto S2 for
which for any ν ∈ Ma(S1) and constant c, we have T = cν ◦ ψ−1. Now it is easy to see that T
is an isometric algebra isomorphism. □

3. Bipositive isomorphisms on second dual of semigroup algebras

Definition 3.1. Suppose that A is a Banach algebra, then the dual space A∗ can be a right
Banach A-bimodule with the canonical operation

⟨f ⋄ a, b⟩ = ⟨f.a, b⟩ = ⟨f, ab⟩,

where f ∈ A∗ and a, b ∈ A. Let Y be a norm closed A-submodule of A∗, then we may define
n ⋄ f ∈ A∗ by

⟨n ⋄ f, a⟩ = ⟨n, f ⋄ a⟩,

for n ∈ Y ∗ and f ∈ Y . If n ⋄ f ∈ Y , then Y is called a left introverted subspace of A∗, by
defining m ⋄ n ∈ Y ∗ through

⟨m ⋄ n, f⟩ = ⟨m,n ⋄ f⟩, (m,n ∈ Y ∗, f ∈ Y ).
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Theorem 3.2. If the Banach algebras LUC(S1)∗ and LUC(S2)
∗ are bipositively algebraically

isomorphic, then there exist topological group isomorphism ψ from S1 onto S2, a continuous
homomorphism χ : S1 −→ (0,∞), and positive constants m and M such that

m ≤ χ(x) ≤M (x ∈ S).

Proof. Let T : LUC(S1)
∗ −→ LUC(S2)

∗ be a bipositive algebra isomorphism. Because both T

and T−1 are order-preserving and positive operators, so they are bounded, and therefore there
exists the set of extreme points of unit ball of the measure algebra M(S1) such that for every
x ∈ S1 there exist ψ(x) ∈ S1, χ(x) ∈ T, that is

T (δx) = χ(x)δψ(x).

To prove the continuity of χ and ψ, we assume that a net (xα) in S1 converges to x in S1, and
we can also assume that xα are contained in a compact neighborhood U of x. Then for every µ
in Ma(S1), we get the result

δxα ∗ µ −→ δx ∗ µ.

Since T is a bounded algebra isomorphism,

T (δxα) ⋄ T (µ) −→ T (δx) ⋄ T (µ)

where (T (δxα)) is a bounded net in M(S2). On the other hand, since

∥T (δxα)∥ ≤ ∥T∥,

we can assume that there is a subnet (T (δxα(i)
)) and an element m in LUC(S2)

∗ such that
T (δxα(i)

) −→ m in the weak-star topology of LUC(S2)∗. Since T is an isomorphism, we get that
both χ and ψ are multiplicative, thus

T (δxα(i)
) ⋄ T (µ) w∗

−→ m ⋄ T (µ).

This implies that
δx ⋄ µ = T−1(m) ⋄ µ

for every µ in Ma(S1). We know that LUC(S1) =Ma(S1) ⋄ LUC(S1), see [7], so T (δx) = m.
Using the same argument as above, it follows that every subnet of (T (δx)) has a convergent

subnet to T (δx), so we conclude that

χ(xα)δψ(xα) = T (δxα)
w∗
−→ T (δx) = χ(x)δψ(x).

By using Theorem 2.10 and its proof, we can conclude the continuity of χ and ψ and also by
considering T−1 we can show that ψ is surjective with a continuous inverse. □

It is well-known from [7], that an element E in Ma(S)
∗∗ is called a mixed identity with norm

one if
ν ⊙ E = E ⊙ ν = ν (ν ∈Ma(S)).

On the other hand
LUC(S) =Ma(S) ◦ L∞(S,Ma(S)).

In this case, there exists an isometric isomorphism πE such that

πE : EL∞(S,Ma(S))
∗ −→ LUC(S)∗.

Now, suppose that there exists an isometric isomorphism T from EL∞(S1,Ma(S1))
∗ onto

L∞(S2,Ma(S2))
∗, and E ∈ L∞(S1,Ma(S1))

∗ is a right identity with norm one, then T (E) ∈
L∞(S2,Ma(S2))

∗ is a right identity with ∥T (E)∥ = 1.
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In [4], H. Farhadi showed that for two locally compact groups G1 and G2, if T defined
by T : L1(G1)

∗∗ −→ L1(G2)
∗∗ is a bipositive algebra isomorphism, then T is an isometry

and the groups G1 and G2 are topologically isomorphic. In the following theorem, we give a
generalization of this theorem on the second dual of semigroup algebras.

Theorem 3.3. Let T : Ma(S1)
∗∗ −→ Ma(S2)

∗∗ be a bipositive algebra isomorphism. Then the
semigroups S1 and S2 are topologically isomorphic.

Proof. To prove it, first assume that there is a net (µα) in Ma(S1) such that µα −→ µ in Ma(S1)

with ∥µα∥ = ∥µ∥ = 1. Thus
T (µα) −→ T (µ).

Let E denote a weak-star cluster point of the canonical image of the bounded approximate
identity (µα) of Ma(S1) in Ma(S1)

∗∗ where µα ≥ 0. Then E is a positive right identity for
Ma(S1)

∗∗, now we show that T (E) is a positive right identity of Ma(S2)
∗∗, since ∥µα∥ = 1, as a

result ∥E∥ ≤ 1, so we get
∥E∥ = ∥E ⋄ E∥ ≤ ∥E∥∥E∥

and
∥E∥ ≥ 1.

Next, we prove that there is a bipositive algebra isomorphism from LUC(S1)
∗∗ onto LUC(S2)∗∗,

for this we define the following mappings

κE :EMa(S1)
∗∗ −→ LUC(S1)

∗

En −→ n
∣∣
LUC(S1)∗

and

κT (E) :T (E)Ma(S2)
∗∗ −→ LUC(S2)

∗

T (E)m −→ m
∣∣
LUC(S2)∗

.

According to the above bipositive algebra isomorphisms, κ−1
E ◦ T ◦ κT (E) is a bipositive algebra

isomorphism from LUC(S1)
∗ onto LUC(S2)∗. Therefore, according to Theorem 3.2, there exist

the numbers m and M and also an isomorphism ψ from S1 onto S2, a semigroup isomorphism
χ : S1 −→ (0,∞), such that

m ≤ χ(x)δψ(x) ≤M

for x ∈ S1. □
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