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1. Preliminaries

Throughout this paper, S denotes a locally compact Hausdorff topological semigroup. Let
S be a locally compact Hausdorff topological foundation semigroup. The space of all bounded
complex regular Borel measures on S is denoted by M(S). This space with the convolution
multiplication * and the total variation norm defines a Banach algebra. The space of all measures
p € M(S) for which that mappings x — 0, * |u| and = — |u| * 6, from S into M(S) are
weakly continuous, is denoted by M, (S), where J, denotes the Dirac measure at x. The locally
compact semigroup S is called a foundation semigroup if S coincides with the closure of the set
U{supp(p) : p € Mq(5)}.

Note that if S is a foundation semigroup with identity, then M,(S) has a bounded approximate
identity, see [7]. Recall that M,(S) is a two-sided closed L-ideal of M (.S) from [7], with the norm

Il = [ d
S
and the convolution product

Ls@don@ = [ [ fanini).

Let us point out that the second dual M, (S)** of M, (S) is a Banach algebra with the first Arens
product ® defined by the equations

(FoH)(f)=F(HS)

(H[f) () = H(fn)

()W) = f(u*v)
for all F, H € My(S)™, f € My(S)*, and pu,v € My(S5).

Let LUC(S) be the set of all left uniformly continuous functions on S; recall that a function
g € Cy(S) is called left uniformly continuous if the mapping z +, g from S into Cy(S) is
continuous, where C(S) denotes the space of all bounded continuous complex-valued functions
on S; as usual Cy(S) denotes the space of functions in Cp(S) vanishing at infinity and C.(5)
denotes its subspace of functions with compact support.

The set of all complex-valued bounded functions g on S that are M,(S)-measurable; that is,
p-measurable for all p € M,(S) is denoted by L(S, My(S)). For every g € L*(S, My(S)),
define

laloe = sup{llgllcyp < 1 € Ma(S)}.
where ||.[|o, |, denotes the essential supremum norm with respect to [u|. Observe, L>(S, M,(S))
with the complex conjugation as involution, the pointwise operations and the norm ||.||« is a
commutative C*-algebra. The duality

7(9) (1) == p(g) Z/Sgdu

defines a linear mapping 7 from L*°(S, M,(S)) into M,(S)*. It is well-known that if S is a
foundation semigroup with identity, then 7 is an isometric isomorphism of L*°(S, M,(S)) onto
M, (S)*.

Let X be a subspace of L>(S, M,(S)) which is left and right translations invariant; that is,
sg and g, are in X for all g € X and s € S, where

(s9)(t) = g(st) and (g5)(t) = g(s)

forall t € S.
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Bipositive isomorphisms on semigroup algebras

Several interesting isomorphism theorems have already been proved for various convolution
algebras over groups G; for (i = 1,2). First Kawada in [6] showed that if we have a bipositive
algebra isomorphism between group algebras, then the underlying locally compact groups must
be isomorphic. In [4], H. Farhadi proved similar results to Kawada’s result for other Banach
algebras related to locally compact groups by first showing that any such bipositive algebra
isomorphism must in fact be an isometric isomorphism.

In this paper, as a generalization of these theorems, we show that the existence of a bipositive
isomorphism between semigroup algebras and their second duals implies that their underlying
locally compact semigroups must be isomorphic.

2. Bipositive isomorphisms of semigroup algebras

In this section, we prove similar results to Wendel’s result for semigroup algebras and we show
that the existence of a bipositive algebra isomorphism between the measure algebras M (.S7) and
M(S2) implies that their underlying locally compact semigroups must be isomorphic. Also we
give a complete description of bipositive algebra isomorphisms between semigroup algebras.

Definition 2.1. Let S be a locally compact semigroup. Then

(1) The function f € Co(S) is called positive if for every x € S, f(x) > 0;

(2) The measure p € M(S) is called positive if for every positive f € Co(S), (u, f) > 0;

(8) The function f € LUC(S) is called positive if f(x) > 0, for all z € S;

(4) The functional m € LUC(S)* is positive if (m, f) > 0, for every positive function f in
LUC(S);

(5) Let A and B be ordered vector spaces. An operator T : A — B is called positive if for
each positive element a € A, T(a) > 0 in B. The operator T is called bipositive if T is

a bijection and both T and T~ are positive operators.
In the following theorem, we prove Wendel’s result for semigroup algebras.

Theorem 2.2. Let Sy and Ss be two locally compact semigroups and T be a bipositive isomor-
phism of M,(S1) onto My(S2). Then T is an isometry.

Proof. T and T~! are both order-preserving operators
p<v, T(p)<Tw), prveM(S)

and therefore are bounded. So the ratio ||Tw||/||x|| is bounded as p # 0,00, over My(Sy). If
p € M,(S1)" it follows by induction that ||u"| = ||u/|™.

Since p is positive and T is bipositive so T is also positive and T'(u™) = (T'w)", it follows
that for fixed positive u # 0 the retio (||T'w||/||p||)™ is bounded above and below for n > 0.
Consequently T is isometric at least for the positive elements of M,(S7).

Now if u € M(S1) and u = pu™ + pu~, where 4™ and = denote respectively the positive and
negative parts of u, then

leell = Nl + 7|
= I+ [l
T+ 1T > (Tt + T |
= Il

With a similar argument for 7!, we obtain the result

lll = 1T T | < \Tpall < el
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then T is an isometry. O

Lemma 2.3. Let S be a locally compact semigroup. Then a left multiplier L, : v — p*v on
M, (S) is positive if only if p is positive.

Proof. If p € M(S) is positive, then it is clear that left multiplier L, (v) = p*v is positive. Now,
we consider the case that L, is positive, by the above conclusion, we have L, (v;) — p where
(v;) is a net bounded approximate identity for M,(S). Finally, as (v;) is positive, so L, (v;) is
positive and consequently u is positive. O

Recall that a locally compact semigroup S is said to be left compactly cancellative if C~1D
is a compact subset of S for all compact subsets C and D of S, where

C'D={ze€S:cxeD forsomeceC}

Right compactly cancellative locally compact semigroups are defined similarly. A semigroup
which is both left and right compactly cancelletive is called compactly cancellative.
Suppose that A is a Banach algebra, for any a,b € A, we define

L(ab) = L(a)b

R(ab) = aR(b)

where operators L and R are called multipliers, also M(A) denotes the set of multipliers on A.

Theorem 2.4. Suppose that S is a locally compact cancellative foundation semigroup with
identity. Then the left multiplier algebra of My(S) is bipositively and algebraically isomorphic
to M(S).

Proof. Suppose that T': M (S) — M (Mqy(S)) such that T'(u) = L,. From [5], we know that if
S is a compactly cancellative foundation semigroup with identity, thus the multiplier algebra of
M,(S) is isomorphic with M (S).

We recall that if 7" is a left multiplier on M,(S) and let a net {v,} from M,(S), then the set
{T'(v4)} is a bounded subnet of M (S). So there exists a subnet {v,,} of {v,} and p € M(S)
for which that

*

T(va;) = p.
Now if v € M,(S), then
T(V*Vai)w—*>T(y)7 T(V*Vai):T(Vai)*yi*)M*y

consequently T'(v) = v * u, we have that T' is algebra isomorphism. Finally, Lemma 2.3 proves
that 1" is bipositive. O

Remark 2.5. Let S be a locally compact foundation semigroup with identity e. The right
annihilator of M,(S) in M(S) is zero.

Proof. Let pq be a bounded approximate identity for M,(S). We know that p, — 6. in w*-
topology. Thus
=0 % =w" —lm(pq * pu) =0.
O

In the following theorem, we give a generalization of Kawada’s result in [6], for locally compact

semigroups with identity.
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Theorem 2.6. Let S1 and Sy be locally compact semigroups and T be a bipositive algebra
isomorphism from M (S1) onto M(S2). Then the locally compact semigroups S and Sa are
isomorphic, and also there exists a continuous character x : S1 — T where T is the circle
semigroup and an isomorphism 1 : S1 — Sy of the locally compact semigroups S1 and Sy such
that for each x € S1, we have

T(5,) = /w (DA (1)) = X (2)500)

Proof. Suppose that T : M (S1) — M (S2) is a bipositive algebra isomorphism. By [!], Theorem
4.3, T and T—! are bounded operators. Suppose that x in S; is given. Since J, is a positive
measure and 7' is a positive operator, T(d,) is a positive measure. Also since T' is an algebra
isomorphism, it preserves the extreme points of the unit ball, by [3], Theorem V.8.4, for each
x € 51, there exist an isomorphism ¢(x) : S; — Sz and a continuous character x(z) : S; — T
such that

(2.1) T(02) = X(2)dy(a)-

Since 7' is an algebra isomorphism and multiplicative and 0, * §, = 0., for each z,y € S1, we
can see that ¢ : S — Sy and x : S1 — T via (2.1) are multiplicative,

T(0zy) = T(65 % 0y) = T(0z) * T(6y).
Suppose that (z,) is a net in S; that is convergent to e, , the identity element of S;. The map

S1+— M(S7) : x — §, is strong operator continuous, for every p € M,(S1),

(2.2) Oy * U LN L.

Since T is bounded, we have
Il
T (b2 * p) — T(p),
in M(S2). Hence

(2.3) T(8,) % T() L 7).

Let U be a precompact neighborhood of e,,. Without loss of generality we can assume z; € U,
for all 7. Then

1T (@)l < ITN[0zall < I7°]-

Hence, the net (7'(d,)) is bounded in M(Sz2), and so it has a subnet (7'(ds,,)) converging
weak-star to some p € M(S2). Then by (2.3), we have that

v T() = T().
Applying T~ to the two sides of this equation yields

T W) * p=1p.
Hence by Remark 2.5, T~1(v) = Oe,, > Or equivalently T'(de, ) = v. Hence
(2.4) v =x(€s1)(0p(es,)) = X(€s1) (e, )-

The equation (2.4), in particular, shows that x(x;) — x(es,) and 9 (z;) — 1 (es, ). Hence, ¥ and
x are continuous. To prove that 1 is a bijection, we note that corresponding to 7!, there exist
B:8Sy— (0,00) and ¢ : Sy — S7 such that

T71(8,) = B(y)ds(y) (y € H).
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It follows from the equations T(T~1(8,)) = 6, and T-YT(6,)) = &, that ¢ is a bijection,
¢ =11yt and B(x(z)) =1\ x(v) that x(z) # 0, for all z € S;. By symmetry, ¢ is continuous.
Therefore 1 is an isomorphism of topological semigroups from S; onto Ss.

Now, we show that for every x € S1 we have

(2.5) 1T~ < Xldy | < IT-
Since T is a bounded operator, for all x € S1, we have

X (@) = X (@) |y | = [T (@) < [ T[HoC@)[ = [IT]-

A similar argument using 7! shows that

17747 < X(@) 18y -

=

Thus we have established the inequalities in (2.5). O

Theorem 2.7. Let T be a bipositive algebra isomorphism from M (S1) onto M(S2). Define the
mapping Ky : Co(S2) = Co(S1) where Ky (f) = x.fo1. ThenT = K7,

Proof. By Theorem 2.6, there exist an isomorphism ¢ of locally compact semigroups S; onto
So, a continuous character y : S1 — T and positive constants M and m such that

(2.6) T(0z) = x(2)0pz) (m < x(x) < M).

For each z € 51, letting pu € M (S1) be such that [|u| = 1, it suffices to show that T'(u) = K7 (1),
where the dual mapping Ty = Ky , from M (S1) onto M (S2) is also a bounded bipositive linear
isomorphism. By Theorem 2.6, T (6,) = x(x)dy is multiplicative on point masses on M (St).
We note that the linear span of point masses is weak-star dense in M (S7), the convolution
product is separately weak-star continuous and T, , = K o 18 weak-star continuous. Clearly,
T,y is invertible with T ;-1 = T} -1, where ﬁ = 1 \ x o9~ 1. Therefore T,y is a bipositive
algebra isomorphism. Taking p in M (S1) with norm 1, we can find a net (pg) in M(S;) such
that

(2.7) lim ||pg * v —p*v|| =0 (v € My(S1)).
By (2.6), T(ug) = K, 4 (1p) for each 8. We claim that T'(ug) w, T(u) in M(S2). To see this
let 1/ be a weak-star limit point of T'(y5) in M(S2) and let pg(;) be a subnet of yg such that

T(ppiy) N p'. Observe that it suffices now to show that p/ = T'() to simplify notation, we can
assume that T'(ug) N w'. Let v € M,(S1) be fixed. Then

1T (pg) * T(w) =T () * T(@)[| = 0

by (2.7).

Since M (S1) = Cp(S1)* is a dual Banach algebra (multiplication in M (Ss) is separately weak-
star continuous), straightforward calculations show that Cy(S2) is a submodule of the dual Ba-
nach M(Sy)-module M (S2)* = Cy(S2)**. Therefore for k € Cy(S2), T'(v).k € M(S2).Co(S2) C
Cp(S2) and hence

(T(p) * T(v), k) = im(T () * T(v), k)
(T (), T'(v)-F)

= (W', T(v).k)

= (W' *T(v), k).
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Thus

T(pxv)=T(p) *T(v)=p *T(v)
and so
(2.8) pxv="T7"1) v, (ve My(S)).

Let (v;) be an approximate identity, then by (2.8), we have
(2.9) pr vy =T W) * v,

Also, clearly we can see that v; — .5 in the weak-star topology of M (S1), by taking the weak-
star limit in (2.9) we that u = T~ (x') and therefore T'(11) = y/. This proves the claim. Finally,
because K , is weak-star continuous and T'(yg) % T(p), the equality T'(u1p) = K3, (up) yields

T(p) = w" = limT(pg) = w* —lm K (1) = K3 4 (1)-
O

Corollary 2.8. Suppose that S1 and So are locally compact cancellative foundation semigroups.
If T is a bipositive algebra isomorphism from M (S1) onto M(S2), then T is an isometry.

Proof. By Theorem 2.6 and Theorem 2.7, there exists an isomorphism of locally compact semi-
groups ¢ from S; onto Sy such that T = K. Tt is readily seen that K is an isometry and
therefore T' is an isometric algebra isomorphism. ]

Theorem 2.9. If T is a bipositive algebra isomorphism from M,(S1) onto M,(S2), then there
exist an isomorphism of locally compact semigroup ¢ : S1 — So and a continuous character
x : 51 = T such that

T(0z) = X(2)0g()-

Proof. Suppose that T is a bipositive algebra isomorphism from M, (S1) onto M,(S2). By Theo-
rem 2.2, T is an isometric isomorphism from M, (S7) onto M,(S2) and according to Theorem 2.4,
T : M(My(S1)) = M(My(S2)) is an isometric isomorphism, so 7" is an isometric isomorphism
from M (S1) onto M(S2), therefore, by Theorem 2.6, the proof is complete. O

In the following theorem, we have obtained a generalization of a well-known result of Kawada
[6] and Wendel [9], for locally compact groups to a more general setting of locally compact
foundation semigroups. Indeed, we prove that if T is a bipositive algebra isomorphism from
M, (S1) onto My (S2), then T is an isometry. So S7 and S are isomorphic.

Theorem 2.10. If T' is a bipositive algebra isomorphism from My(S1) onto M,(S2), where Sy
and So are locally compact cancellative foundation semigroups, then there exist a continuous
character x : S1 — T and an isomorphism v : S1 — So of the locally compact semigroups Sy
and S such that for p € M,(S1)

T(p) =c(xoy Hpoyp™".

Proof. Suppose that T' is a bipositive algebra isomorphism from M,(S1) onto M,(S2), we show
that for any pu € M(S1),
Lyt My(S1) — My(S2)
vi—=T(uxsT (V)
where v € M,(S2), is a multiplier. According to the above theorem, there exists a measure

T () € M(S2) for which
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If o € M(S)*, then by Lemma 2.3, L, is a positive multiplier, so T'(u) € M(S2)*. Also,
Theorem 2.4 shows that L, is a bipositive algebra isomorphism from M (S1) onto M (S2). In
particular, it is easy to show that T : g — T(u) is a bipositive isomorphism from M (S;) onto
M (S2). Consequently by Theorem 2.6 there exist a continuous character y : S; — T and an
isomorphism v : S; — So of the locally compact semigroups S1 and S5. Define

U: Ma(Sl) — MQ(SQ)

Uv) =c(xov™roy™
where c is constant. It is readily seen that U is a bipositive algebra isomorphism. Now we prove
that
TU ', UT ! =1,
which r, f(z) = f(zy). Since

we have
TU Yr,UT Y (v)(x) =TU ry(cxop ' T Hv) op™?
=TU Yex o ' T () o~ ) (ay)
=T (¢ X(ex o™ T () o p™1) o) (y)
=T(T')(zy) = v(zy) = ryv(z).

)
(

So TU™! is a left multiplier. Note that the left multiplier TU ! is a bipositive invertible left

Lis positive. On

multiplier, the measure s is also positive because TU ! is bipositive thus p~
the other hand p is invertible because TU ! is an invertible left multiplier. So TU~! is the

identity operator on M,(S2), and T'=U. O

Corollary 2.11. If T is a bipositive algebra isomorphism from M,(S1) onto M,(S2), where Sy
and So are locally compact cancellative foundation semigroups, then T is an isometry.

Proof. By Theorem 2.6 and Theorem 2.10, there exists an isomorphism ¢ from S; onto Sy for
which for any v € M,(S;) and constant ¢, we have T' = cv o 9~!. Now it is easy to see that T
is an isometric algebra isomorphism. O

3. Bipositive isomorphisms on second dual of semigroup algebras

Definition 3.1. Suppose that A is a Banach algebra, then the dual space A* can be a right

Banach A-bimodule with the canonical operation

(foa,b) =(fa,b)=(f ab),
where f € A* and a, b € A. Let Y be a norm closed A-submodule of A*, then we may define
nofeA* by
(no f,a) ={(n, foa),
formeY* and feY. Ifnof €Y, thenY is called a left introverted subspace of A*, by
defining mon € Y* through

(mon, f) = (mynof),  (mneY*, fey).
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Theorem 3.2. If the Banach algebras LUC(S1)* and LUC(S2)* are bipositively algebraically
isomorphic, then there exist topological group isomorphism 1 from S1 onto Sa, a continuous
homomorphism x : S1 — (0,00), and positive constants m and M such that

m<x(z) <M (x €9).

Proof. Let T : LUC(S1)* — LUC(S2)* be a bipositive algebra isomorphism. Because both T'
and T~! are order-preserving and positive operators, so they are bounded, and therefore there
exists the set of extreme points of unit ball of the measure algebra M (S7) such that for every
x € S there exist ¥(z) € S, x(z) € T, that is

T(0z) = X(%)0y(a)-
To prove the continuity of x and 1, we assume that a net (z,) in S7 converges to = in Sp, and
we can also assume that x, are contained in a compact neighborhood U of x. Then for every p
in M,(S1), we get the result

Oz, ¥ b — g * L.
Since T is a bounded algebra isomorphism,

T(bz,) 0T () — T(0z) o T(pr)
where (T'(dz,)) is a bounded net in M (S2). On the other hand, since
1T (O < (||,

we can assume that there is a subnet (T'(ds,,))) and an element m in LUC(S2)" such that

T(5%(i)) — m in the weak-star topology of LUC(S2)*. Since T' is an isomorphism, we get that
both x and vy are multiplicative, thus
T(0s,,) © T(H) 5 m o T(p).
This implies that
Spop=T"Y(m)opu
for every p in M, (S1). We know that LUC(S1) = M,(S1) ¢ LUC(S1), see [7], so T'(6,) = m.

Using the same argument as above, it follows that every subnet of (T7'(d,)) has a convergent
subnet to T'(d,), so we conclude that

X(Ta)0y(za) = T(0zy) = T(02) = X(2)8y(a)-

By using Theorem 2.10 and its proof, we can conclude the continuity of x and % and also by

considering 7! we can show that 1) is surjective with a continuous inverse. [l
It is well-known from [7], that an element E in M,(S)** is called a mixed identity with norm
one if

vOE=FEGov=v (v € My(S)).
On the other hand

LUC(S) = My(S) o L*(S, M,(95)).
In this case, there exists an isometric isomorphism 7g such that

g EL™(S, My (S))* — LUC(S)*.

Now, suppose that there exists an isometric isomorphism 7' from FEL*(S1, M,(S1))* onto
L>°(Sa, My (S2))*, and E € L*(Sy, M,(S1))* is a right identity with norm one, then T'(E) €

L*°(S2, My (S2))* is a right identity with || T(E)|| = 1.
101



Measure Algebras and Applications, Year. 2025, Vol. 3, No. 1, pp. 93-103

In [1], H. Farhadi showed that for two locally compact groups G; and Gj, if T defined
by T : LY(G1)*™ — LY(Gq)*™* is a bipositive algebra isomorphism, then T is an isometry
and the groups G; and G3 are topologically isomorphic. In the following theorem, we give a
generalization of this theorem on the second dual of semigroup algebras.

Theorem 3.3. Let T : M,(S1)™* — M,(S2)™ be a bipositive algebra isomorphism. Then the

semigroups S1 and Sy are topologically isomorphic.

Proof. To prove it, first assume that there is a net (1) in M,(S1) such that g, — pin My(S1)
with [|pa | = ] = 1. Thus

T(1ta) — T(p).

Let E denote a weak-star cluster point of the canonical image of the bounded approximate
identity (ua) of Ma(S1) in Ma(S1)*™ where piq > 0. Then E is a positive right identity for
M,(S1)**, now we show that T'(E) is a positive right identity of M,(S2)**, since ||ua| =1, as a
result || E]| <1, so we get
IE[l = |E o El < |E[|E]
and
1E] > 1.

Next, we prove that there is a bipositive algebra isomorphism from LUC(S7)** onto LUC/(S2)**,
for this we define the following mappings

KRE :EMa(Sl)** — LUC(Sl)*
By — n{LUC(Sl)*

and

kre) T(E)My(S2)™ — LUC(S5)*

T(E)pym — m‘LUC(S2)*'

According to the above bipositive algebra isomorphisms, /4;;31 oT o k(g is a bipositive algebra
isomorphism from LUC(S1)* onto LUC(S2)*. Therefore, according to Theorem 3.2, there exist
the numbers m and M and also an isomorphism  from S; onto So, a semigroup isomorphism
X : S1 — (0,00), such that

m < X(2)0yp(z) < M
for x € S4. O
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