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Vector-valued holomorphic functions
1. Preliminaries

Let X be a complex Banach space and U an open subset of the complex plane C. A function
f:U — X is said to be holomorphic if

(1.1) f'(z) == lim

h—0
heC\{0}

flz+h) - f(z)
h

exists for all z € U. The space of all X-valued holomorphic functions on U is denoted by
H(U,X). This space is a complete, locally convex space with respect to the compact-open
topology [20]. We will write H(U) as shorthand for H(U, C).

A strictly positive function v : U — (0, 00) is called a weight function. The subspace H,, (U, X)
is the normed space consisting of all X-valued holomorphic functions f € H(U, X) that are
bounded with respect to the extended weighted sup-norm

1fllo = sup [[f(2)]| v(2),
zeU

where || - || denotes the norm in the Banach space X. We write H,(U) when X = C.

Some classical results from complex analysis do not extend directly to the vector-valued
setting—for example, Montel’s theorem fails in this context. This presents a significant challenge
when attempting to generalize results from the scalar-valued to the vector-valued framework.
Hence, transferring results to the vector-valued setting is not always straightforward or trivial.

The purpose of this paper is to extend several known results for complex-valued holomorphic
functions to the vector-valued case. Vector-valued holomorphic functions are important tools in
the theory of functional calculus and play a vital role in the theory of one-parameter semigroups
[3, 23]. Considerable research has been conducted on the structure and properties of vector-
valued holomorphic function spaces. For more information, see [3, 6, 8, 17, 19].

A particularly interesting direction of generalization involves classical operators. The compo-
sition operator Cy, : f +— f o, where ¢ : D — D is holomorphic, has been studied by Ryff [22]

and Nordgren [21]. The differentiation operator D : f — f’ has been investigated by Harutyun-
yan and Lusky [18]. Necessary and sufficient conditions for the boundedness and compactness
of these operators have also been discussed (see, e.g., [7, 9, 10]).

The paper is organized as follows. In Section 2, we begin with a discussion of the space
H, (U, X), where U is an open subset of C and v is a weight function. We then introduce the
subspace H2™(G, X), consisting of all 27-periodic vector-valued holomorphic functions on the
upper half-plane G, and prove that it is isomorphic to Hy(ID, X) for a particular weight function
0.

In Section 3, we study two classical operators—differentiation and composition—on the space
H,(D, X). Specifically, we determine necessary conditions for the compactness of these opera-
tors, necessary and sufficient conditions for the boundedness of the composition operator, and
necessary conditions for the boundedness of the differentiation operator.

In Section 4, we focus on the algebraic structure of the space H, (D, .A), where A is a Banach
algebra. We analyze the algebraic properties of H,(ID, A) in terms of the structure of .4 and the
weight function v. For example, we show that H, (D, .A) is a unital Banach algebra if and only
if A is unital and v is a bounded weight function.

2. Isomorphism of H(D, X) and H>™ (G, X)

Let U be an open subset of the complex plane C and X a complex Banach space. For a weight

function v on U, the weighted normed space of vector-valued holomorphic functions is defined
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by
H,(U,X) = {f € HU,X) : | fllo = Sugllf(Z)llv(Z) < OO}-
zE

The following general result is fundamental in the study of this class of vector-valued holo-

morphic functions.

Theorem 2.1. Suppose that U is an open subset of C, v is a weight function, and X is a
complex Banach space. Then H,(U, X) is a Banach space.

Throughout this paper, we denote by D = {z € C : |2| < 1} the unit disc and by G = {w €
C : Im(w) > 0} the upper half-plane.
A weight v on D is called radial if
v(Az) =wv(z), forall A € C with |A| = 1.
A continuous weight v on the upper half-plane G is called standard if lim,_,ov(ir) = 0 and

there exists a constant ¢ > 0 such that

v(z) < cv(w) whenever 0 < Imz < Imw.

Example 2.2. We present two standard examples on the unit disc and the upper half-plane.
(i) v1(2) = (1 — |2|?)? is a standard, continuous, radial weight on D for all 0 < p < oco.
=e

(ii) va(2)

Now suppose that v is a continuous radial weight on ID. The corresponding associated weight
v is defined by

[0

Xp (f [mz) is a standard weight on G for all o > 0.

o(z) = (swp {|f(2)] : [ flo <), (2 €D).
Note that the term radial is used only for weights on the unit disc. In this work, v denotes
a standard weight on G depending only on the imaginary part of the variable, whereas the
associated weight v is radial on the unit disc D.

It is easy to verify that
1
i) 1621l e, ()= »
where ¢, denotes the point evaluation at z € D. Bierstedt et al. [5] proved that associated
weights are continuous, satisfy v < 0, and that for each z € D, there exists f, € H, (D) such
that [|£2]l, < 1 and [£.(2)] = 7.
Applying the Hahn-Banach theorem, we conclude that if X is a complex Banach space, then
for every f € H,(D, X) we have
sup || f(2)] ©(z) = sup [ £ (2)[| v(2).
z€D zeD
This implies that Hy(D, X) is isometrically isomorphic to H,(D, X) [11].
A subspace of H,(G, X), namely the weighted space of vector-valued 2m-periodic holomorphic
functions from G to X, is defined by
H>™(G,X) :={f € Hy(G,X) : f(z) = f(z+2n) for all z € G}.
Suppose v is a standard weight such that H2™(G, X) # {0}. Ardalani and Lusky, in [2],
defined b,, as the smallest integer satisfying
(2.1) sup e v M) 4(2) < 0.
zeG
It is well known that every holomorphic function admits a unique power series expansion,

and if a complex function has an isolated singularity, then the Taylor series may be replaced
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Vector-valued holomorphic functions

by a Laurent series. These facts extend naturally to the vector-valued case. The following two
results, originally stated for scalar-valued functions in [2], hold in the vector-valued setting as
well.

Proposition 2.3. For each f € H*™ (G, X), there exist elements A\, € X such that for allw € G,

where the series converges uniformly on compact subsets of G.

Proof. First, suppose z € D\ {0} and define the conformal map 7(z) := —ilogz. If f €
H?™(G, X), then the composition (f o 7)(z) = f(—ilogz) is holomorphic. Using the Laurent
series expansion in the vector-valued case for z = ¢, we obtain:

(2.2) f(w) = f(—ilogz) = Z Ap et

n=—oo
where {\, }nez is a sequence in X.

Using this representation and the orthogonality of exponentials, we compute:

flw+z)e *de = — Z A emw/ e =k gy

n=—oo

1 2
21 Jo
= )\ke

Taking the norm on both sides and multiplying by v(w) yields:

Ak o) = F(w+ e de v(w)

H 1 2

1 2m
<3 | We+aldrow

< sup | fw+ ) v(w)
0<zx<27

(2.3) <c swp [|f(w+ )] v(w+ o),
0<x<2m

where the last inequality holds for some constant ¢ > 0 due to the standardness of the weight
v. Thus, for all w € G, we have

Al e u(w) = [Are® | v(w)
<ec sup [[fw+a)]v(w+a).

<x<2mw
Now, by the definition in (2.1), it follows that b, < k. Hence, from the series in (2.2), the proof
is complete. [l

We conclude this section by extending a classical theorem concerning the isomorphism between
the spaces H>"(G, X) and Hy(D, X).

Theorem 2.4. Suppose X is a complex Banach space and v is a weight function on G. For
every z € D, define

2" v(—ilog|z]), if z#0,

0, if z=0.

Then U is a radial weight on D such that

0(z) =

lim 0(z) = 0.
|z| =1
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Moreover, the two spaces HX™ (G, X) and Hy(D, X) are isomorphic.

Proof. Since v is a standard weight, it is equivalent to vy (w) := v(i,Imw) (see [2]). Let f €
H?2™(G, X). By Proposition 2.3, we can write

o .
= Z )\kezkw, Ar € X.

Setting z = €™, we have z € D and

f(—ilogz) = Z Aoz

k=by,
Hence,
b f(—ilogz) = Z Ap2t Tl = Z/\nerv
k=b,

This shows that z = 0 is a removable singularity for the operator defined below, and therefore
the resulting function is holomorphic on D.
Define the operator

S:H>™(G,X)— Hy(D, X), (Sf)(2) := 27 f(—ilogz), zeD.

Using the definitions of © and S, we compute

1(5F)(2)16(2) = [|f(—ilog 2)[| v(—ilog|2])

= Z Moz || v(—ilog |2]).

k=by,

Taking the supremum over D, we obtain

1SFlle = £ 1o -

Thus, S is injective and continuous. Since v and v; are equivalent, the norms || - ||, and || - ||,
are equivalent as well.

Now let g € Hy(D, X) and define f(w) := e®%g(e™), w € G. It is easy to verify that
f € H™(G,X) and (Sf)(z) = g(z) for all z € D. Hence, S is surjective.
Therefore, S is an isomorphism from H2™(G, X) onto Hy(D, X). O

Note that the weight © in the above theorem is not necessarily continuous. However, there
exists a continuous radial weight u on D defined by

sup v(—ilogt) if [2] < 3,
!
u(z) = {7’
sup v(—ilogt) if 3 <[z <1,
|z]<t<1

such that 0[[ /1y and ul[1/,1) are equivalent. Moreover, the norms || - || and || - ||, are also

equivalent; see [2, Lemma 2.3].
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Vector-valued holomorphic functions
3. Composition and Differentiation operators on H,(D, X)

Let X be a complex Banach space, and let ¢ : D — D be a holomorphic mapping. The

composition operator associated with ¢ is defined by
Co:HD) - HD), [ Cu(f)=foe.
We also define the differentiation operator as
D:HD)— HD), f— D(f)=/f".

Let CN’w and D denote the corresponding operators on the vector-valued space H (D, X).

Wolf, in [24], established necessary and sufficient conditions for the compactness of the
composition-differentiation operator DC, on H,, (D). In the special case when ¢ = idp, Theorem
2 of [24] shows that the compactness of the differentiation operator

D:H,D)— H,(D)

depends critically on the choice of weights v and w.

For example, by that theorem, when v = w, the operator D is not compact. However, for

v(z) =1 |2 and w(z) = (1|22,

the operator D is compact.
Before we present the main results, we recall the following useful properties. Let g € H, (D, X),
f € Hy,(D), and z € D.

(i) If v is a bounded weight, then H, (D) contains all constant functions.
(ii) For any nonzero x € X, the map

Jz :HU(]D))—)HU(]D)?X)’ = f®z, (f@l’)(Z) :f(Z)fL‘,
is a bounded linear injection with ||J;|| < ||z|.
(iii) For any z* € X*, the map
Q. Hy(D,X) — Hy(D), gr—a*og, (x"og)(z)=12"(9(2)),

is a bounded surjection with ||Qg-|| < ||z*].
(iv) The point evaluation map
3, : Hy(D, X) = X, 6.(9) = g(2),
is bounded with [|0,|| < —

v(z) "
For further details, see [19]. It is also worth noting that

Qq+ 0 Jr =idp, ), Wwhenever (z,z%) = 1.

Using these tools, a necessary condition for the compactness of the composition operator 5;
on the Banach space H, (D, X) was established. Under the same assumptions, we now present
the following results.

Lemma 3.1. Suppose that X is a complex Banach space, and v and w are continuous weights
on . The following assertions hold:

(a) For all x € X, the following diagram commutes.

H,(D,X) —2

Ho(D, X)

o Ja

H, (D) H, (D)
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(b) Suppose that idp € H,(D) and
D: H,(D,X) = H,(D, X)
is a well-defined operator. Define the linear operator
Ly : X — H,(D,X), Iigy(z)(z) = (idp ® z)(2) = xz,
for all z € D. Then, the following diagram commutes.

H,(D, X)

H,(D, X)

Lo, do

X —— X
Ix

Proof.
(a) For all x € X and f € H,(D), we compute

Do Ju(f) = D(f ®x).

By definition, we have

(f @) (w) - (f®z)(2)

D(f ® z)(z) = lim

o Fw)e = f()e
= (1 PO =IE) o~ by a1 = 01 @ )02
~ (Lo D).

Hence, DolJ,=J,o0 D, and the diagram commutes.
(b) Let z € X be arbitrary. Then

[Hias ()]l = Sup [idp (2)[|v(2)

= [lz]| - idpll, < o0,

so Iigq, is a bounded, injective, linear operator.
According to the definitions in the diagram of part (b), for all z € X, we have:

8o 0 Do ligy(x) = 6y o D(idp ® ) = p(z) = = = I(x).
This shows that dp o Do Iiq, = I, and thus the diagram commutes. O

The following result is an immediate consequence of the commutativity of the diagrams in
Lemma 3.1.

Corollary 3.2. With the notation in Lemma 3.1, we have:

(i) If D is bounded, then D is also bounded.
(i) If D : Hy(D, X) — H,(D, X) is compact, then D is compact and X is finite-dimensional.
(iii) If D : Hy(D,X) — H,(D, X) is weakly compact, then D is weakly compact and X is
reflexive.

Proof.
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Vector-valued holomorphic functions

(i) Suppose D is bounded. Since .J, is injective, it has a left inverse
Qo+ : Hy(D, X) — Hy(D), Qu(f)=2"0f,

which is bounded by the inverse mapping theorem. Then @« o Do J, is bounded, so D is
bounded.
(ii) Suppose D is compact, and let L;! be a left inverse of J, for some x € X. By the commu-
tativity of the diagram in Lemma 3.1(a), we have

-

xT

'oDoJ, =D,

and by Proposition 3.5 in [15], D is compact.
From part (b) of Lemma 3.1, and a similar argument, it follows that the operator Ix is
compact, hence X is finite-dimensional.

(iii) Using the same reasoning and Proposition 5.2 in [15], the operators D and Iy are weakly
compact. Then, by Proposition 5.5 in [15], X is a reflexive Banach space. (Il
Before proceeding further, it is worthwhile to extend Theorem 2.1 from [!4, Chapter VII].

Recall that for a Banach space X, the space of all X-valued continuous functions on an open
subset U C D), equipped with the compact-open topology, is denoted by C(U, X).

Theorem 3.3. Let {f,} be a sequence in H(U, X), and suppose f € C(U, X) such that fp, — f

with respect to the compact-open topology Te,. Then f is analytic and, for each integer k > 1,
f,(lk) — %) with the same topology.

Proof. Since Morera’s Theorem and Cauchy’s Integral Formula hold for vector-valued holomor-
phic functions (see [1, 1.5]), the result follows directly from [I, Theorem 2.1]. O

Now, we establish some necessary conditions for the boundedness of the differentiation oper-

ator D in the vector-valued setting.

Theorem 3.4. Let v be a radial, continuous, non-increasing weight on D such that

lim v(z) =0,
|z]—1—

and define vi(z) = (1 — |z|)v(z) for all z € D. Then the following statements are equivalent:
(a) For every f € H,(D, X), we have Bf € H, (D, X),
(b) D is a bounded operator from H,(D,X) into H,, (D, X).

Moreover, each of the above implies:

(¢)

Proof. (a) = (b): Let {fn,} € H,(D, X) be a sequence such that (fn, f},) — (f,g). To prove
that D is continuous, it suffices to show g = f’. Since f, — f and 7o, C 7o, we also have
fn =% f. By Theorem 3.3, f! 7% f’ and since f/, =% g, it follows that f! 7% g as well. Thus,
f' = g because H,, (D, X) is Hausdorff. Hence, by the Closed Graph Theorem, D is bounded.

(b) = (a) is immediate.

(b) = (c): Assume that D is bounded. Let z € X, z* € X* such that (z,2*) = 1. From the
commutative diagram in Lemma 3.1(a), we have

Do.J,=J,oD,
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Thus,

Que 0 (Do Jy) = Qpe 0 (Jy 0 D)
= (Qm* oJm)oD
- D.

Therefore, D is a bounded operator from H,(D) to H,, (D), and by [18, Theorem 3.2], the
condition in (c) follows. O

In the rest of this section, we explore the similarities and connections between the two oper-

ators C, and C,,. Laitila and Tylli showed in [19] that Cy, is never compact on H, (DD, X') when
X is an infinite-dimensional complex Banach space. Therefore, we investigate the distinction

between compactness and weak compactness of C, and C,.

Theorem 3.5. Let ¢ be an analytic self-map of D. Let v be a radial, continuous weight,
decreasing on [0, 1], with

lim v(r) =0,

r—1—
and let w be a weight on D vanishing at the boundary. Then:

(a) The operator CF’:D is bounded from H,(D, X) to H, (D, X) if and only if
w(2)

sup

z€D 'U(QO(Z»

(b) Let v and w be continuous, non-increasing weights on D, both tending to zero at the

(3.1)

boundary, i.e.,

lim v(|]z]) = lim w(|z]) = 0.
|z| =1~ |z| =1~

Consider the following conditions:

1 : Hy (D, — H, (D, 158 compact.
(i) Cp: Hy(D, X) = H,(D, X) i

1 : Hy(D, — H,(D, is weakly compact.
i) Cyp @ Hy(D, X H,(D, X) i kl
e Ol

lim -
n—oo [lem? |,

Then (i) = (ii) = (iii). However, the equivalence between these conditions—as in the
scalar-valued case—does mot hold in general.

Proof. (a) Suppose (ip is bounded from H,(D, X) into H, (D, X). Then, by [19, Corollary 2],
the scalar operator C, is also bounded. Therefore, [7, Theorem 4] implies that relation (3.1)
must hold.

Conversely, let f € H,(D, X). Then:

ICo (Nl = sup |1 0 p(2)]1x w(2)
zeD

sup [ f((2)) | xv(e(2)) -
zeD

w(2) >
< | sup flo-
(sup oy ) 11
Thus, if (3.1) holds, then C,, is bounded.

(b) The implication (i) = (ii) is immediate.
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To show (ii) = (iii): weak compactness of C'Nw implies, by [19], that C, is weakly compact.
Then, by [7, Corollary 8(b)], we have:
n
@l

n—oo  [|("]y

=0,
which gives condition (iii). O

We now present an example to show that the three conditions in part (b) of Theorem 3.5 are

not equivalent.

Example 3.6. Consider the following cases:

(1) Let w(z) = v(z) = 1—|z|, and p(2) = 5 for all z € D. These clearly satisfy the conditions
of Theorem 3.5, and moreover:

ing(z)
tim 1o
n—oo ||y
However, the operator C, : H,(D, co) = Hy, (D, co) is not weakly compact, since cq is not
reflexive. This shows that condition (iii) does not imply (ii).

(2) Let v(z) =1 — |22, w(z) = (1 — |2]?)%, and let ¢ be the identity map on D. Then:

< w(2) cup LT |2%)?
up =sup ————
p(x)sr V(@(2) e 1= 2)2
=1-r2
Thus,
lim sup w(z) =0

=17 |p(2)|>r U(SO(Z))

By [0, Theorem 3.3/, the operator C, : H,(D) — H, (D) is compact.
Now take X = fP for any 1 < p < co. Since (P is reflexive, the operator

C,p « Hy(D, 7) — H,y (D, (7

is weakly compact, by [5, Theorem 17]. However, Cy, is not compact, since P is infinite-

dimensional. This shows that (ii) does not imply (7).

4. Vector-Valued Weighted Banach algebras

Let V' be a countable family of weights. Bierstedt et al. in [1] defined and studied weighted
spaces of holomorphic functions:

HV(D) = {f € HD) : ||fllo =sup|f(2)|v(z) < 0o, forallv e V}.
zeD

This space is the direct limit of the family of Banach spaces { H,,(U)}, and thus forms a Fréchet
space with seminorms (|| - ||, )vev. For more details, see [10].

Let U C C be an open set. A subset B C U is said to be U-bounded if it is bounded and the
distance d(B,C\ U) > 0. A family V of weights defined on U satisfies Condition I if for each
U-bounded set B, there exists v € V such that inf,cpv(z) > 0.

Carando and Sevilla-Peris in [13] provided a condition under which HV (U) becomes an alge-

bra, when V' consists of radial, bounded weights.
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Proposition 4.1 ([13], Proposition 1). Let U be an open and balanced subset of C, and let V
be a family of radial, bounded weights satisfying Condition I. Then HV (U) is an algebra if for
every v € V, there exist w € V and ¢ > 0 such that

v(z) < e?(z), forall z € U.

Corollary 4.2. Assume that v is a radial, bounded weight on D. Then H, (D) is an algebra if
and only if H,(D) = H*(D).

Proof. Suppose H,(D) is an algebra. Then Hy(D) is also an algebra. By the above proposition
and the identity 0 = 0, it follows that ¥ is bounded below. Hence,

Hy(D) = H*(D).
The converse is straightforward to verify. O

Now, for a Banach algebra A, we consider a weight v (not necessarily bounded) and prove
that H,(D, A) forms a Banach algebra under appropriate assumptions.

Proposition 4.3. Let A be a Banach algebra and let v be a weight on D that is bounded below.
Then H,(D, A) is a Banach algebra.

Proof. Since v is bounded below, there exists d > 0 such that v(z) > d for all z € D. Let
fvg € HU<]D,A> Then:

Ifgllo = Sup 1/ (2)9(2)]l.av(2)

2
v (2)
(4.1) < sup | f(2)]lallg(z)la—,
z€D
1
< =l fllollgllo,
so with the equivalent norm || f|| := L[| f||,, the space H,(ID, A) is a normed algebra. Since it is
also a Banach space, it follows that it is a Banach algebra. Il

This behavior clearly occurs for certain weights, such as
1

forp>0, and w(z)=-——= onD.

v(z) = =

1

(1 =z

We can now obtain more detailed information about the Banach algebra H,(U,.A). Before
proceeding, observe the following lemma. The closed subspace H(U) C H,(U) is defined by

)= {1 € H(0): Tim 7)) =0},
|z|—=0U

where U C C is open with boundary oU. The limit |z| — OU means that for each € > 0, there
exists a compact subset K C U such that |f(z)|v(z) <eforall z € U\ K.

Lemma 4.4. Let U C C be an open connected set, and let v be a strictly positive continuous
weight on U. For any distinct points z # w € U, either dim HO(U) < 1, or there exists
f € HY(U) such that f(z) # f(w). In particular, if dim HO(U) > 2, then H2(U) separates the
points of U. [12, Lemma 4]

Proposition 4.5. Let v be a strictly positive continuous weight on D, and let A be a Banach
algebra. If both H, (D) and H,(D, A) are Banach algebras, then:

(i) Hy(D, A) is commutative if and only if A is commutative.

(ii) Hy(D, A) is unital if and only if A is unital and v is bounded.
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(iii) If A is a unital, commutative, and semisimple Banach algebra and v is bounded, then

H,(D, A) is also unital, commutative, and semisimple.

Proof. (i) This is immediate from the inclusion A ® H, (D) C H,(D, .A).
(ii) For the “only if” direction, suppose there exists a unit o € H,, (D, A), i.e., fa = f for all
f € Hy(D, A). In particular, for f = g ® a with g € H,(D) and a € A, we have

(9 ®a)a(z) = g(z)aa(z) = g(z)a for all z € D.

By Lemma 4.4, H,(D) separates points, so we can choose g such that g(z) # 0. It follows that

ac(z) = a, hence a(z) = e, the unit in A. Thus, « is the constant function e, and so
ledllo = sup [|(2)[lv(z) = [le]| sup v(z) < oo
zeD z€D

Hence, v must be bounded. The converse is straightforward.
(iii) Suppose f € rad(H,(D,.A)), the Jacobson radical. Then 1 — fg is invertible for all
g € H,(D, A), i.e., there exists h € H,(D, .A) such that

(1—fgh=1 in Hy(D,A),

which implies
(e — f(2)g(2))h(z) = e for all z € D.

Fix zp € D. By Lemma 4.4, there exists kg € H,(ID) such that ko(z9) = 1. Then, for any a € A,
define g = kg ® a € H,(D, A), and at zy we get

(e = f(z0)a)h(z0) = e.

Thus e — f(z0)a is invertible in A for all a € A, implying f(z9) € rad(A) = {0}, since A is
semisimple. Hence, f(z9) = 0, and since zy was arbitrary, f = 0. Therefore, rad(H,(D,A)) =
{0}, showing semisimplicity. O

Conclusion

We established an isomorphism between the weighted Banach space H2"(G,X) of vector-
valued holomorphic 27-periodic functions on the upper half-plane and the weighted space Hy (D, X)
on the unit disc. The construction is based on an explicit transformation of weights, associating
a standard weight on G with a radial weight on D vanishing at the boundary. This identification

allows the transfer of structural and operator-theoretic properties between the two settings.
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