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Vector-valued holomorphic functions

1. Preliminaries

Let X be a complex Banach space and U an open subset of the complex plane C. A function
f : U → X is said to be holomorphic if

f ′(z) := lim
h→0

h∈C\{0}

f(z + h)− f(z)

h
(1.1)

exists for all z ∈ U . The space of all X-valued holomorphic functions on U is denoted by
H(U,X). This space is a complete, locally convex space with respect to the compact-open
topology [20]. We will write H(U) as shorthand for H(U,C).

A strictly positive function υ : U → (0,∞) is called a weight function. The subspace Hυ(U,X)

is the normed space consisting of all X-valued holomorphic functions f ∈ H(U,X) that are
bounded with respect to the extended weighted sup-norm

∥f∥υ = sup
z∈U

∥f(z)∥ υ(z),

where ∥ · ∥ denotes the norm in the Banach space X. We write Hυ(U) when X = C.
Some classical results from complex analysis do not extend directly to the vector-valued

setting—for example, Montel’s theorem fails in this context. This presents a significant challenge
when attempting to generalize results from the scalar-valued to the vector-valued framework.
Hence, transferring results to the vector-valued setting is not always straightforward or trivial.

The purpose of this paper is to extend several known results for complex-valued holomorphic
functions to the vector-valued case. Vector-valued holomorphic functions are important tools in
the theory of functional calculus and play a vital role in the theory of one-parameter semigroups
[3, 23]. Considerable research has been conducted on the structure and properties of vector-
valued holomorphic function spaces. For more information, see [3, 6, 8, 17, 19].

A particularly interesting direction of generalization involves classical operators. The compo-
sition operator Cφ : f 7→ f ◦ φ, where φ : D → D is holomorphic, has been studied by Ryff [22]
and Nordgren [21]. The differentiation operator D : f 7→ f ′ has been investigated by Harutyun-
yan and Lusky [18]. Necessary and sufficient conditions for the boundedness and compactness
of these operators have also been discussed (see, e.g., [7, 9, 10]).

The paper is organized as follows. In Section 2, we begin with a discussion of the space
Hυ(U,X), where U is an open subset of C and υ is a weight function. We then introduce the
subspace H2π

υ (G, X), consisting of all 2π-periodic vector-valued holomorphic functions on the
upper half-plane G, and prove that it is isomorphic to Hυ̂(D, X) for a particular weight function
υ̂.

In Section 3, we study two classical operators—differentiation and composition—on the space
Hυ(D, X). Specifically, we determine necessary conditions for the compactness of these opera-
tors, necessary and sufficient conditions for the boundedness of the composition operator, and
necessary conditions for the boundedness of the differentiation operator.

In Section 4, we focus on the algebraic structure of the space Hυ(D,A), where A is a Banach
algebra. We analyze the algebraic properties of Hυ(D,A) in terms of the structure of A and the
weight function υ. For example, we show that Hυ(D,A) is a unital Banach algebra if and only
if A is unital and υ is a bounded weight function.

2. Isomorphism of Hυ̂(D, X) and H2π
υ (G, X)

Let U be an open subset of the complex plane C and X a complex Banach space. For a weight
function υ on U , the weighted normed space of vector-valued holomorphic functions is defined
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by

Hυ(U,X) :=

{
f ∈ H(U,X) : ∥f∥υ = sup

z∈U
∥f(z)∥ υ(z) < ∞

}
.

The following general result is fundamental in the study of this class of vector-valued holo-
morphic functions.

Theorem 2.1. Suppose that U is an open subset of C, υ is a weight function, and X is a
complex Banach space. Then Hυ(U,X) is a Banach space.

Throughout this paper, we denote by D = {z ∈ C : |z| < 1} the unit disc and by G = {ω ∈
C : Im(ω) > 0} the upper half-plane.

A weight υ on D is called radial if

υ(λz) = υ(z), for all λ ∈ C with |λ| = 1.

A continuous weight υ on the upper half-plane G is called standard if limr→0 υ(ir) = 0 and
there exists a constant c > 0 such that

υ(z) ≤ c υ(w) whenever 0 < Im z ≤ Imw.

Example 2.2. We present two standard examples on the unit disc and the upper half-plane.
(i) υ1(z) = (1− |z|2)p is a standard, continuous, radial weight on D for all 0 < p < ∞.

(ii) υ2(z) = exp
(
− α

Im z

)
is a standard weight on G for all α > 0.

Now suppose that υ is a continuous radial weight on D. The corresponding associated weight
υ̃ is defined by

υ̃(z) = (sup {|f(z)| : ∥f∥υ ≤ 1})−1 , (z ∈ D).

Note that the term radial is used only for weights on the unit disc. In this work, υ denotes
a standard weight on G depending only on the imaginary part of the variable, whereas the
associated weight υ̂ is radial on the unit disc D.

It is easy to verify that
1

υ̃(z)
= ∥δz∥Hυ(D)∗ ,

where δz denotes the point evaluation at z ∈ D. Bierstedt et al. [5] proved that associated
weights are continuous, satisfy υ ≤ υ̃, and that for each z ∈ D, there exists fz ∈ Hυ(D) such
that ∥fz∥υ ≤ 1 and |fz(z)| = 1

υ̃(z) .
Applying the Hahn-Banach theorem, we conclude that if X is a complex Banach space, then

for every f ∈ Hυ(D, X) we have

sup
z∈D

∥f(z)∥ υ̃(z) = sup
z∈D

∥f(z)∥ υ(z).

This implies that Hυ̃(D, X) is isometrically isomorphic to Hυ(D, X) [11].
A subspace of Hυ(G, X), namely the weighted space of vector-valued 2π-periodic holomorphic

functions from G to X, is defined by
H2π

υ (G, X) := {f ∈ Hυ(G, X) : f(z) = f(z + 2π) for all z ∈ G} .
Suppose υ is a standard weight such that H2π

υ (G, X) ̸= {0}. Ardalani and Lusky, in [2],
defined bυ as the smallest integer satisfying

(2.1) sup
z∈G

e−bυ Im(z) υ(z) < ∞.

It is well known that every holomorphic function admits a unique power series expansion,
and if a complex function has an isolated singularity, then the Taylor series may be replaced

82



Vector-valued holomorphic functions

by a Laurent series. These facts extend naturally to the vector-valued case. The following two
results, originally stated for scalar-valued functions in [2], hold in the vector-valued setting as
well.

Proposition 2.3. For each f ∈ H2π
υ (G, X), there exist elements λk ∈ X such that for all ω ∈ G,

f(ω) =
∞∑

k=bυ

λke
ikω,

where the series converges uniformly on compact subsets of G.

Proof. First, suppose z ∈ D \ {0} and define the conformal map τ(z) := −i log z. If f ∈
H2π

υ (G, X), then the composition (f ◦ τ)(z) = f(−i log z) is holomorphic. Using the Laurent
series expansion in the vector-valued case for z = eiω, we obtain:

(2.2) f(ω) = f(−i log z) =
∞∑

n=−∞
λne

inω,

where {λn}n∈Z is a sequence in X.
Using this representation and the orthogonality of exponentials, we compute:

1

2π

∫ 2π

0
f(ω + x)e−ikx dx =

1

2π

∞∑
n=−∞

λne
inω

∫ 2π

0
ei(n−k)x dx

= λke
ikω.

Taking the norm on both sides and multiplying by υ(ω) yields:

∥λke
ikω∥ υ(ω) =

∥∥∥∥ 1

2π

∫ 2π

0
f(ω + x)e−ikx dx

∥∥∥∥ υ(ω)
≤ 1

2π

∫ 2π

0
∥f(ω + x)∥ dx υ(ω)

≤ sup
0≤x≤2π

∥f(ω + x)∥ υ(ω)

≤ c sup
0≤x≤2π

∥f(ω + x)∥ υ(ω + x),(2.3)

where the last inequality holds for some constant c > 0 due to the standardness of the weight
υ. Thus, for all ω ∈ G, we have

∥λk∥ e−k Im(ω) υ(ω) = ∥λke
ikω∥ υ(ω)

≤ c sup
0≤x≤2π

∥f(ω + x)∥ υ(ω + x).

Now, by the definition in (2.1), it follows that bυ ≤ k. Hence, from the series in (2.2), the proof
is complete. □

We conclude this section by extending a classical theorem concerning the isomorphism between
the spaces H2π

υ (G, X) and Hυ̂(D, X).

Theorem 2.4. Suppose X is a complex Banach space and υ is a weight function on G. For
every z ∈ D, define

υ̂(z) =

|z|bυ υ(−i log |z|), if z ̸= 0,

0, if z = 0.

Then υ̂ is a radial weight on D such that

lim
|z|→1

υ̂(z) = 0.
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Moreover, the two spaces H2π
υ (G, X) and Hυ̂(D, X) are isomorphic.

Proof. Since υ is a standard weight, it is equivalent to υ1(ω) := υ(i, Imω) (see [2]). Let f ∈
H2π

υ (G, X). By Proposition 2.3, we can write

f(ω) =
∞∑

k=bυ

λke
ikω, λk ∈ X.

Setting z = eiω, we have z ∈ D and

f(−i log z) =

∞∑
k=bυ

λkz
k.

Hence,

z−bυf(−i log z) =

∞∑
k=bυ

λkz
k−bυ =

∞∑
n=0

λn+bυz
n.

This shows that z = 0 is a removable singularity for the operator defined below, and therefore
the resulting function is holomorphic on D.

Define the operator

S : H2π
υ (G, X) → Hυ̂(D, X), (Sf)(z) := z−bυf(−i log z), z ∈ D.

Using the definitions of υ̂ and S, we compute

∥(Sf)(z)∥ υ̂(z) = ∥f(−i log z)∥ υ(−i log |z|)

=

∥∥∥∥∥∥
∞∑

k=bυ

λkz
k

∥∥∥∥∥∥ υ(−i log |z|).

Taking the supremum over D, we obtain

∥Sf∥υ̂ = ∥f∥υ1 .

Thus, S is injective and continuous. Since υ and υ1 are equivalent, the norms ∥ · ∥υ and ∥ · ∥υ1
are equivalent as well.

Now let g ∈ Hυ̂(D, X) and define f(ω) := eibυωg(eiω), ω ∈ G. It is easy to verify that
f ∈ H2π

υ (G, X) and (Sf)(z) = g(z) for all z ∈ D. Hence, S is surjective.
Therefore, S is an isomorphism from H2π

υ (G, X) onto Hυ̂(D, X). □

Note that the weight υ̂ in the above theorem is not necessarily continuous. However, there
exists a continuous radial weight u on D defined by

u(z) =


sup

1
2
≤t<1

υ(−i log t) if |z| ≤ 1
2 ,

sup
|z|≤t<1

υ(−i log t) if 1
2 < |z| < 1,

such that υ̂|[1/2,1) and u|[1/2,1) are equivalent. Moreover, the norms ∥ · ∥υ̂ and ∥ · ∥u are also
equivalent; see [2, Lemma 2.3].
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3. Composition and Differentiation operators on Hυ(D, X)

Let X be a complex Banach space, and let φ : D → D be a holomorphic mapping. The
composition operator associated with φ is defined by

Cφ : H(D) → H(D), f 7→ Cφ(f) = f ◦ φ.

We also define the differentiation operator as

D : H(D) → H(D), f 7→ D(f) = f ′.

Let C̃φ and D̃ denote the corresponding operators on the vector-valued space H(D, X).
Wolf, in [24], established necessary and sufficient conditions for the compactness of the

composition-differentiation operator DCφ on Hυ(D). In the special case when φ = idD, Theorem
2 of [24] shows that the compactness of the differentiation operator

D : Hυ(D) → Hω(D)

depends critically on the choice of weights υ and ω.
For example, by that theorem, when υ = ω, the operator D is not compact. However, for

υ(z) = 1− |z|2 and ω(z) = (1− |z|2)3,

the operator D is compact.
Before we present the main results, we recall the following useful properties. Let g ∈ Hυ(D, X),

f ∈ Hυ(D), and z ∈ D.
(i) If υ is a bounded weight, then Hυ(D) contains all constant functions.
(ii) For any nonzero x ∈ X, the map

Jx : Hυ(D) → Hυ(D, X), f 7→ f ⊗ x, (f ⊗ x)(z) = f(z)x,

is a bounded linear injection with ∥Jx∥ ≤ ∥x∥.
(iii) For any x∗ ∈ X∗, the map

Qx∗ : Hυ(D, X) → Hυ(D), g 7→ x∗ ◦ g, (x∗ ◦ g)(z) = x∗(g(z)),

is a bounded surjection with ∥Qx∗∥ ≤ ∥x∗∥.
(iv) The point evaluation map

δz : Hυ(D, X) → X, δz(g) = g(z),

is bounded with ∥δz∥ ≤ 1
υ(z) .

For further details, see [19]. It is also worth noting that

Qx∗ ◦ Jx = idHυ(D), whenever ⟨x, x∗⟩ = 1.

Using these tools, a necessary condition for the compactness of the composition operator C̃φ

on the Banach space Hυ(D, X) was established. Under the same assumptions, we now present
the following results.

Lemma 3.1. Suppose that X is a complex Banach space, and υ and ω are continuous weights
on D. The following assertions hold:

(a) For all x ∈ X, the following diagram commutes.
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(b) Suppose that idD ∈ Hυ(D) and

D̃ : Hυ(D, X) → Hω(D, X)

is a well-defined operator. Define the linear operator

IidD : X → Hυ(D, X), IidD(x)(z) = (idD ⊗ x)(z) = xz,

for all z ∈ D. Then, the following diagram commutes.

Proof.
(a) For all x ∈ X and f ∈ Hυ(D), we compute

D̃ ◦ Jx(f) = D̃(f ⊗ x).

By definition, we have

D̃(f ⊗ x)(z) = lim
w→z

(f ⊗ x)(w)− (f ⊗ x)(z)

w − z

= lim
w→z

f(w)x− f(z)x

w − z

=

(
lim
w→z

f(w)− f(z)

w − z

)
x = D(f)(z)x = (D(f)⊗ x)(z)

= (Jx ◦D)(f)(z).

Hence, D̃ ◦ Jx = Jx ◦D, and the diagram commutes.
(b) Let x ∈ X be arbitrary. Then

∥IidD(x)∥υ = sup
z∈D

∥idD(z)x∥υ(z)

= ∥x∥ · ∥idD∥υ < ∞,

so IidD is a bounded, injective, linear operator.
According to the definitions in the diagram of part (b), for all x ∈ X, we have:

δ0 ◦ D̃ ◦ IidD(x) = δ0 ◦ D̃(idD ⊗ x) = δ0(x) = x = I(x).

This shows that δ0 ◦ D̃ ◦ IidD = I, and thus the diagram commutes. □

The following result is an immediate consequence of the commutativity of the diagrams in
Lemma 3.1.

Corollary 3.2. With the notation in Lemma 3.1, we have:
(i) If D̃ is bounded, then D is also bounded.

(ii) If D̃ : Hυ(D, X) → Hω(D, X) is compact, then D is compact and X is finite-dimensional.
(iii) If D̃ : Hυ(D, X) → Hω(D, X) is weakly compact, then D is weakly compact and X is

reflexive.

Proof.
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(i) Suppose D̃ is bounded. Since Jx is injective, it has a left inverse

Qx∗ : Hω(D, X) → Hω(D), Qx∗(f) = x∗ ◦ f,

which is bounded by the inverse mapping theorem. Then Qx∗ ◦ D̃ ◦ Jx is bounded, so D is
bounded.

(ii) Suppose D̃ is compact, and let L−1
x be a left inverse of Jx for some x ∈ X. By the commu-

tativity of the diagram in Lemma 3.1(a), we have

L−1
x ◦ D̃ ◦ Jx = D,

and by Proposition 3.5 in [15], D is compact.
From part (b) of Lemma 3.1, and a similar argument, it follows that the operator IX is

compact, hence X is finite-dimensional.
(iii) Using the same reasoning and Proposition 5.2 in [15], the operators D and IX are weakly
compact. Then, by Proposition 5.5 in [15], X is a reflexive Banach space. □

Before proceeding further, it is worthwhile to extend Theorem 2.1 from [14, Chapter VII].
Recall that for a Banach space X, the space of all X-valued continuous functions on an open
subset U ⊆ D, equipped with the compact-open topology, is denoted by C(U,X).

Theorem 3.3. Let {fn} be a sequence in H(U,X), and suppose f ∈ C(U,X) such that fn → f

with respect to the compact-open topology τco. Then f is analytic and, for each integer k ≥ 1,
f
(k)
n → f (k) with the same topology.

Proof. Since Morera’s Theorem and Cauchy’s Integral Formula hold for vector-valued holomor-
phic functions (see [1, 1.5]), the result follows directly from [14, Theorem 2.1]. □

Now, we establish some necessary conditions for the boundedness of the differentiation oper-
ator

∼
D in the vector-valued setting.

Theorem 3.4. Let υ be a radial, continuous, non-increasing weight on D such that

lim
|z|→1−

υ(z) = 0,

and define υ1(z) = (1− |z|)υ(z) for all z ∈ D. Then the following statements are equivalent:

(a) For every f ∈ Hυ(D, X), we have
∼
Df ∈ Hυ1(D, X),

(b)
∼
D is a bounded operator from Hυ(D, X) into Hυ1(D, X).

Moreover, each of the above implies:
(c)

sup
n∈N

υ(1− 2−n)

υ(1− 2−n−1)
< ∞.

Proof. (a) ⇒ (b): Let {fn} ⊆ Hυ(D, X) be a sequence such that (fn, f
′
n) → (f, g). To prove

that
∼
D is continuous, it suffices to show g = f ′. Since fn

τυ−→ f and τco ⊆ τυ, we also have
fn

τco−−→ f . By Theorem 3.3, f ′
n

τco−−→ f ′, and since f ′
n

τυ−→ g, it follows that f ′
n

τco−−→ g as well. Thus,
f ′ = g because Hυ1(D, X) is Hausdorff. Hence, by the Closed Graph Theorem,

∼
D is bounded.

(b) ⇒ (a) is immediate.
(b) ⇒ (c): Assume that

∼
D is bounded. Let x ∈ X, x∗ ∈ X∗ such that ⟨x, x∗⟩ = 1. From the

commutative diagram in Lemma 3.1(a), we have
∼
D ◦ Jx = Jx ◦D.
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Thus,

Qx∗ ◦ (
∼
D ◦ Jx) = Qx∗ ◦ (Jx ◦D)

= (Qx∗ ◦ Jx) ◦D

= D.

Therefore, D is a bounded operator from Hυ(D) to Hυ1(D), and by [18, Theorem 3.2], the
condition in (c) follows. □

In the rest of this section, we explore the similarities and connections between the two oper-
ators Cφ and

∼
Cφ. Laitila and Tylli showed in [19] that

∼
Cφ is never compact on Hυ(D, X) when

X is an infinite-dimensional complex Banach space. Therefore, we investigate the distinction
between compactness and weak compactness of Cφ and

∼
Cφ.

Theorem 3.5. Let φ be an analytic self-map of D. Let υ be a radial, continuous weight,
decreasing on [0, 1], with

lim
r→1−

υ(r) = 0,

and let ω be a weight on D vanishing at the boundary. Then:

(a) The operator
∼
Cφ is bounded from Hυ(D, X) to Hω(D, X) if and only if

(3.1) sup
z∈D

ω(z)

υ(φ(z))
< ∞.

(b) Let υ and ω be continuous, non-increasing weights on D, both tending to zero at the
boundary, i.e.,

lim
|z|→1−

υ(|z|) = lim
|z|→1−

ω(|z|) = 0.

Consider the following conditions:
(i)

∼
Cφ : Hυ(D, X) → Hω(D, X) is compact.

(ii)
∼
Cφ : Hυ(D, X) → Hω(D, X) is weakly compact.

(iii)

lim
n→∞

∥einφ(z)∥ω
∥einz∥υ

= 0.

Then (i) ⇒ (ii) ⇒ (iii). However, the equivalence between these conditions—as in the
scalar-valued case—does not hold in general.

Proof. (a) Suppose
∼
Cφ is bounded from Hυ(D, X) into Hω(D, X). Then, by [19, Corollary 2],

the scalar operator Cφ is also bounded. Therefore, [7, Theorem 4] implies that relation (3.1)
must hold.

Conversely, let f ∈ Hυ(D, X). Then:

∥
∼
Cφ(f)∥ω = sup

z∈D
∥f ◦ φ(z)∥X ω(z)

= sup
z∈D

∥f(φ(z))∥Xυ(φ(z)) · ω(z)

υ(φ(z))

≤
(
sup
z∈D

ω(z)

υ(φ(z))

)
∥f∥υ.

Thus, if (3.1) holds, then
∼
Cφ is bounded.

(b) The implication (i) ⇒ (ii) is immediate.
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To show (ii) ⇒ (iii): weak compactness of
∼
Cφ implies, by [19], that Cφ is weakly compact.

Then, by [7, Corollary 8(b)], we have:

lim
n→∞

∥φn(z)∥ω
∥ζn∥υ

= 0,

which gives condition (iii). □

We now present an example to show that the three conditions in part (b) of Theorem 3.5 are
not equivalent.

Example 3.6. Consider the following cases:
(1) Let ω(z) = υ(z) = 1−|z|, and φ(z) = z

2 for all z ∈ D. These clearly satisfy the conditions
of Theorem 3.5, and moreover:

lim
n→∞

∥einφ(z)∥υ
∥einz∥υ

= 0.

However, the operator
∼
Cφ : Hυ(D, c0) → Hω(D, c0) is not weakly compact, since c0 is not

reflexive. This shows that condition (iii) does not imply (ii).
(2) Let υ(z) = 1− |z|2, ω(z) = (1− |z|2)2, and let φ be the identity map on D. Then:

sup
|φ(z)|>r

ω(z)

υ(φ(z))
= sup

|z|>r

(1− |z|2)2

1− |z|2

= 1− r2.

Thus,

lim
r→1−

sup
|φ(z)|>r

ω(z)

υ(φ(z))
= 0.

By [9, Theorem 3.3], the operator Cφ : Hυ(D) → Hω(D) is compact.
Now take X = ℓp for any 1 < p < ∞. Since ℓp is reflexive, the operator

∼
Cφ : Hυ(D, ℓp) → Hω(D, ℓp)

is weakly compact, by [8, Theorem 17]. However,
∼
Cφ is not compact, since ℓp is infinite-

dimensional. This shows that (ii) does not imply (i).

4. Vector-Valued Weighted Banach algebras

Let V be a countable family of weights. Bierstedt et al. in [4] defined and studied weighted
spaces of holomorphic functions:

HV (D) =
{
f ∈ H(D) : ∥f∥υ = sup

z∈D
|f(z)|υ(z) < ∞, for all υ ∈ V

}
.

This space is the direct limit of the family of Banach spaces {Hυ(U)}, and thus forms a Fréchet
space with seminorms (∥ · ∥υ)υ∈V . For more details, see [16].

Let U ⊂ C be an open set. A subset B ⊂ U is said to be U -bounded if it is bounded and the
distance d(B,C \ U) > 0. A family V of weights defined on U satisfies Condition I if for each
U -bounded set B, there exists υ ∈ V such that infz∈B υ(z) > 0.

Carando and Sevilla-Peris in [13] provided a condition under which HV (U) becomes an alge-
bra, when V consists of radial, bounded weights.
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Proposition 4.1 ([13], Proposition 1). Let U be an open and balanced subset of C, and let V

be a family of radial, bounded weights satisfying Condition I. Then HV (U) is an algebra if for
every υ ∈ V , there exist ω ∈ V and c > 0 such that

υ(z) ≤ cω̃2(z), for all z ∈ U.

Corollary 4.2. Assume that υ is a radial, bounded weight on D. Then Hυ(D) is an algebra if
and only if Hυ(D) = H∞(D).

Proof. Suppose Hυ(D) is an algebra. Then Hυ̃(D) is also an algebra. By the above proposition
and the identity ˜̃υ = υ̃, it follows that υ̃ is bounded below. Hence,

Hυ̃(D) = H∞(D).

The converse is straightforward to verify. □

Now, for a Banach algebra A, we consider a weight υ (not necessarily bounded) and prove
that Hυ(D,A) forms a Banach algebra under appropriate assumptions.

Proposition 4.3. Let A be a Banach algebra and let υ be a weight on D that is bounded below.
Then Hυ(D,A) is a Banach algebra.

Proof. Since υ is bounded below, there exists d > 0 such that υ(z) ≥ d for all z ∈ D. Let
f, g ∈ Hυ(D,A). Then:

∥fg∥υ = sup
z∈D

∥f(z)g(z)∥Aυ(z)

≤ sup
z∈D

∥f(z)∥A∥g(z)∥A
υ2(z)

d
(4.1)

≤ 1

d
∥f∥υ∥g∥υ,

so with the equivalent norm ∥f∥ := 1
d∥f∥υ, the space Hυ(D,A) is a normed algebra. Since it is

also a Banach space, it follows that it is a Banach algebra. □

This behavior clearly occurs for certain weights, such as

υ(z) =
1

(1− |z|)p
for p > 0, and ω(z) =

1

1− e−|z| on D.

We can now obtain more detailed information about the Banach algebra Hυ(U,A). Before
proceeding, observe the following lemma. The closed subspace H0

υ(U) ⊂ Hυ(U) is defined by

H0
υ(U) :=

{
f ∈ Hυ(U) : lim

|z|→∂U
|f(z)|υ(z) = 0

}
,

where U ⊂ C is open with boundary ∂U . The limit |z| → ∂U means that for each ε > 0, there
exists a compact subset K ⊂ U such that |f(z)|υ(z) < ε for all z ∈ U \K.

Lemma 4.4. Let U ⊂ C be an open connected set, and let υ be a strictly positive continuous
weight on U . For any distinct points z ̸= w ∈ U , either dimH0

υ(U) ≤ 1, or there exists
f ∈ H0

υ(U) such that f(z) ̸= f(w). In particular, if dimH0
υ(U) ≥ 2, then H0

υ(U) separates the
points of U . [12, Lemma 4]

Proposition 4.5. Let υ be a strictly positive continuous weight on D, and let A be a Banach
algebra. If both Hυ(D) and Hυ(D,A) are Banach algebras, then:

(i) Hυ(D,A) is commutative if and only if A is commutative.
(ii) Hυ(D,A) is unital if and only if A is unital and υ is bounded.
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(iii) If A is a unital, commutative, and semisimple Banach algebra and υ is bounded, then
Hυ(D,A) is also unital, commutative, and semisimple.

Proof. (i) This is immediate from the inclusion A⊗Hυ(D) ⊂ Hυ(D,A).
(ii) For the “only if” direction, suppose there exists a unit α ∈ Hυ(D,A), i.e., fα = f for all

f ∈ Hυ(D,A). In particular, for f = g ⊗ a with g ∈ Hυ(D) and a ∈ A, we have

(g ⊗ a)α(z) = g(z)aα(z) = g(z)a for all z ∈ D.

By Lemma 4.4, Hυ(D) separates points, so we can choose g such that g(z) ̸= 0. It follows that
aα(z) = a, hence α(z) = e, the unit in A. Thus, α is the constant function e, and so

∥α∥υ = sup
z∈D

∥α(z)∥υ(z) = ∥e∥ sup
z∈D

υ(z) < ∞.

Hence, υ must be bounded. The converse is straightforward.
(iii) Suppose f ∈ rad(Hυ(D,A)), the Jacobson radical. Then 1 − fg is invertible for all

g ∈ Hυ(D,A), i.e., there exists h ∈ Hυ(D,A) such that

(1− fg)h = 1 in Hυ(D,A),

which implies
(e− f(z)g(z))h(z) = e for all z ∈ D.

Fix z0 ∈ D. By Lemma 4.4, there exists k0 ∈ Hυ(D) such that k0(z0) = 1. Then, for any a ∈ A,
define g = k0 ⊗ a ∈ Hυ(D,A), and at z0 we get

(e− f(z0)a)h(z0) = e.

Thus e − f(z0)a is invertible in A for all a ∈ A, implying f(z0) ∈ rad(A) = {0}, since A is
semisimple. Hence, f(z0) = 0, and since z0 was arbitrary, f = 0. Therefore, rad(Hυ(D,A)) =

{0}, showing semisimplicity. □

Conclusion

We established an isomorphism between the weighted Banach space H2π
υ (G, X) of vector-

valued holomorphic 2π-periodic functions on the upper half-plane and the weighted space Hυ̂(D, X)

on the unit disc. The construction is based on an explicit transformation of weights, associating
a standard weight on G with a radial weight on D vanishing at the boundary. This identification
allows the transfer of structural and operator-theoretic properties between the two settings.
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